

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

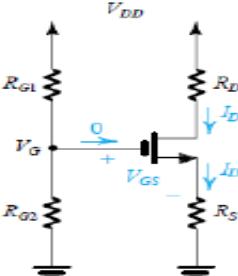
**Programme: B.E.**

**Branch: Electronics and Communication Engineering**

**Course Code: 22EC3PCAEC**

**Course: Analog Electronic Circuits**

**Semester: III**


**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I         |    |                                                                                                                                                                                          | CO  | PO  | Marks |
|------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|
| 1                | a) | Determine the output waveform for the sinusoidal input of the figure1.                                                                                                                   | CO2 | PO1 | 06    |
|                  | b) | Determine input impedance, output impedance and voltage gain from ac equivalent circuit of a voltage divider biasing of BJT.                                                             | CO2 | PO1 | 06    |
|                  | c) | Analyze voltage divider bias circuit using exact analysis.                                                                                                                               | CO1 | -   | 08    |
| <b>OR</b>        |    |                                                                                                                                                                                          |     |     |       |
| 2                | a) | For the following transfer characteristics in figure 2 identify and analyze the circuit, also obtain the output wave form if the input wave form is $10\sin\omega t$ .(assume Si diode)  | CO3 | PO2 | 8     |
|                  | b) | For CE amplifier with voltage divider bias, calculate $r_e$ , $Z_i$ , $Z_o$ , $A_v$ , $A_i$ if $R_1=47K\Omega$ , $R_2=8.2K\Omega$ , $R_C=6.2K\Omega$ , $R_E = 1.5K\Omega$ , $\beta=90$ . | CO3 | PO2 | 12    |
| <b>UNIT - II</b> |    |                                                                                                                                                                                          |     |     |       |
| 3                | a) | Write the block diagram of the following indicating $A$ , $A_f$ and $\beta$ .                                                                                                            | CO1 | -   | 10    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |    |
|---|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   |                                                                                                  | i) Voltage series feedback amplifier (ii) Voltage shunt feedback amplifier (iii) Current series feedback amplifier and (iv) Current shunt feedback amplifier.                                                                                                                                                                                                                                                                         |     |     |    |
|   | b)                                                                                               | Describe the working principle of a class A transformer coupled power amplifier circuit. Show that maximum power conversion efficiency is 50% for class A power amplifier.                                                                                                                                                                                                                                                            | CO2 | PO1 | 10 |
|   | <b>OR</b>                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |    |
| 4 | a)                                                                                               | With a neat diagram and waveforms, explain the working of complementary symmetry class B power amplifier. Also derive an expression for conversion efficiency.                                                                                                                                                                                                                                                                        | CO1 | -   | 12 |
|   | b)                                                                                               | A voltage series feedback amplifier has $R_B=50\text{ k}\Omega$ , $R_C=2.7\text{ k}\Omega$ , $R_E=600\Omega$ , $V_{CC}=15\text{ V}$ , $h_{FE}=200$ , $h_{IE}=1000\text{ }\Omega$ . Calculate (1) $A_V$ & $A_{VF}$ (2) $R_i$ & $R_{if}$ (3) $R_o$ & $R_{of}$ .                                                                                                                                                                         | CO2 | PO1 | 8  |
|   | <b>UNIT - III</b>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |    |
| 5 | a)                                                                                               | Analyse biasing by fixing $V_{GS}$ in a MOSFET with $i_D$ - $V_{GS}$ characteristics.                                                                                                                                                                                                                                                                                                                                                 | CO3 | PO2 | 08 |
|   | b)                                                                                               | Design the circuit in Fig 3 to establish a DC drain current $I_D=0.5\text{ mA}$ . The MOSFET is specified to have $V_t=1\text{ V}$ and $k_nW/L=1\text{ mA/V}^2$ . For simplicity neglect the channel-length modulation effect. Use a power supply $V_{DD}=15\text{ V}$ . Calculate the percentage change in the value of $I_D$ obtained when the MOSFET is replaced with another unit having the same $k_nW/L$ but $V_t=1.5\text{ V}$ | CO4 | PO3 | 08 |
|   |  <p>Fig 3</p> |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |    |
|   | c)                                                                                               | Derive the expression for the signal current in the drain terminal for small signal operation with the help of a neat conceptual amplifier circuit.                                                                                                                                                                                                                                                                                   | CO2 | PO1 | 04 |
|   | <b>OR</b>                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |    |
| 6 | a)                                                                                               | With the neat circuit diagram, Explain the biasing of MOSFET using a Drain to Gate feedback resistor.                                                                                                                                                                                                                                                                                                                                 | CO1 | -   | 08 |
|   | b)                                                                                               | Analyze the circuit in Fig 4 and determine its small-signal voltage gain, its input resistance and the largest allowable input signal. The transistor has $V_t=1.5\text{ V}$ , $k_nW/L=0.25\text{ mA/V}^2$ and $V_A=50\text{ V}$ . Assume the coupling capacitors to be sufficiently large so as to act as short circuits at the signal frequencies of interest.                                                                      | CO3 | PO2 | 08 |

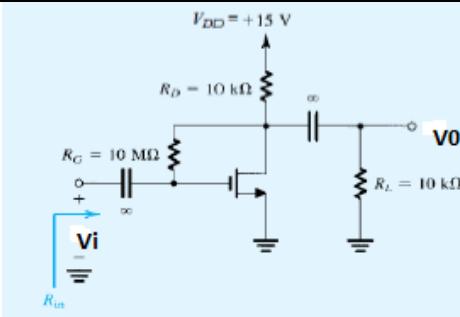



Fig 4

c) Derive the expression for the voltage gain of a MOSFET amplifier. Draw the instantaneous waveforms of  $V_{GS}$  and  $V_{DS}$ .

**UNIT - IV**

7 a) Derive the expression for  $R_{in}$ ,  $A_v$ ,  $A_{v0}$ ,  $G_m$  and  $R_0$  for CS amplifier for small signal analysis.

b) Analyze the three different relationships for determining transconductance  $g_m$ .

**OR**

8 a) Derive the expression for input resistance, output resistance, voltage gain and overall voltage gain of a common gate MOSFET amplifier

b) With suitable diagrams and equations deduce an expression for current gain in a current mirror circuit.

**UNIT - V**

9 a) With a neat circuit diagram, explain Instrumentation amplifier using op-amp.

b) With a neat functional diagram, explain the working of 555 timer as an Astable multivibrator. Derive the expression for time period and duty cycle.

**OR**

10 a) Find the output voltage for the circuit shown in the figure 5

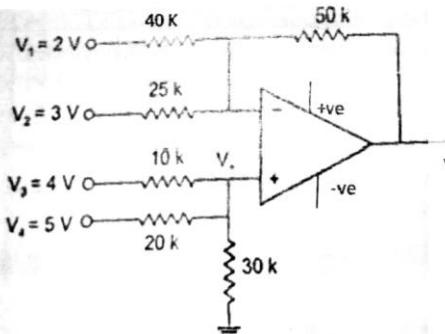



Fig 5

b) With a neat block diagram explain Phase Locked Loop

\*\*\*\*\*