

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCDCD

Course: Digital Circuit Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Given the Boolean expression $F = m_0 + m_1 + m_2 + m_3 + m_5 + m_7 + m_8 + m_{10}$ where all m_x are the minterms to the input variables P,Q,R and S, find the simplified SOP expression for F and realize using NAND gates.	CO 1	PO 1	08
	b)	In a combinational circuit of 4 variables A,B,C and D, the output is equal to 1 if input variables have more 0's than 1's. The output is zero otherwise. Derive the expression and write the circuit with basic logic gates for the same.	CO 1	PO 1	08
	c)	Analyze the below logical circuit and find simplified output expression using Boolean laws.	CO 2	PO 2	04
UNIT - II					
2	a)	Design a combinational circuit to implement the following Boolean function $f(a, b, c, d) = \sum m(0,1,5,6,7,9,10,15)$ using i) 8X1 Multiplexer with a,b,c as select lines ii) 4:16 decoder with active low output	CO 3	PO 3	08
	b)	Implement the following using 3X4X2 PLA with both true and complemented outputs	CO 1	PO 1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		$f_1(a, b, c) = \sum m(0,1,3,5)$ $f_2(a, b, c) = \sum m(0,2,3,4)$																					
	c)	Design a BCD adder using 4-bit parallel adders by drawing its logical circuit	CO 3	PO 3	06																		
		UNIT III																					
3	a)	Explain the working of positive edge triggered D flip-flop with timing diagram	-	-	06																		
	b)	Convert JK flip-flop to AB flip-flop. Function table of AB flip-flop is described in the below table	CO 1	PO 1	07																		
		<table border="1"> <thead> <tr> <th>A</th> <th>B</th> <th>Q(t+1)</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>Q'</td> </tr> <tr> <td>1</td> <td>0</td> <td>Q</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>	A	B	Q(t+1)	0	0	0	0	1	Q'	1	0	Q	1	1	1						
A	B	Q(t+1)																					
0	0	0																					
0	1	Q'																					
1	0	Q																					
1	1	1																					
	c)	Design Mod-6 asynchronous down counter using positive edge triggered JK flip-flop with initial state as '111'. Draw the timing diagram	CO 3	PO 3	07																		
		OR																					
4	a)	Briefly explain the race around condition in JK flip-flop. What are the ways of eliminating this condition?	-	-	06																		
	b)	Design a 4-bit shift register to perform the following operations	CO 3	PO 3	07																		
		<table border="1"> <thead> <tr> <th colspan="2">Select Lines</th> <th>Register Operations</th> </tr> <tr> <th>S1</th> <th>S0</th> <th></th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>Hold</td> </tr> <tr> <td>0</td> <td>1</td> <td>Synchronous clear</td> </tr> <tr> <td>1</td> <td>0</td> <td>Complement the content</td> </tr> <tr> <td>1</td> <td>1</td> <td>Circular shift right</td> </tr> </tbody> </table>	Select Lines		Register Operations	S1	S0		0	0	Hold	0	1	Synchronous clear	1	0	Complement the content	1	1	Circular shift right			
Select Lines		Register Operations																					
S1	S0																						
0	0	Hold																					
0	1	Synchronous clear																					
1	0	Complement the content																					
1	1	Circular shift right																					
	c)	Design Mod-6 synchronous counter to count the sequence 0-2-3-6-5-1-0 using D flip-flop.	CO 3	PO 3	07																		
		UNIT IV																					
5	a)	Analyze the synchronous sequential circuit shown in the figure. Obtain the state table and state diagram. Identify the machine	CO 2	PO 2	08																		
	b)	Draw the Mealy and Moore state diagram to detect the sequence "101"	CO 1	PO 1	06																		

	c)	Design a circuit with Mealy network to implement serial binary adder	CO 3	PO 3	06
UNIT - V					
6	a)	What are the basic components of ASM charts? Discuss the role of each with proper notation and design an ASM chart for the sequence recognizer to search for $X_1X_2 = 01, 01, 11, 00$.	CO 1	PO 1	10
	b)	Design ASM chart for binary multiplier write ASM transition and assigned ASM transition tables.	CO 3	PO 3	10
OR					
7	a)	Explain parallel and serial decision boxes with an example.	-	-	6
	b)	Develop an ASM chart for the below state diagram.	CO2	PO2	4
	c)	Analyze the ASM chart given below and realize with discrete gates and clocked d flip-flop.	CO 2	PO 2	10
