

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

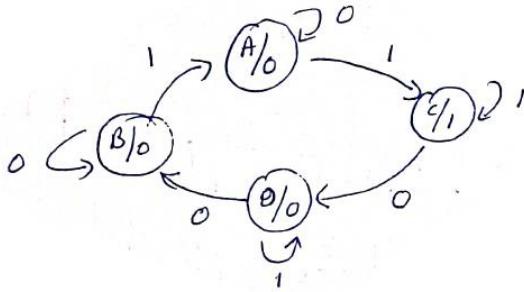
Programme: B.E.

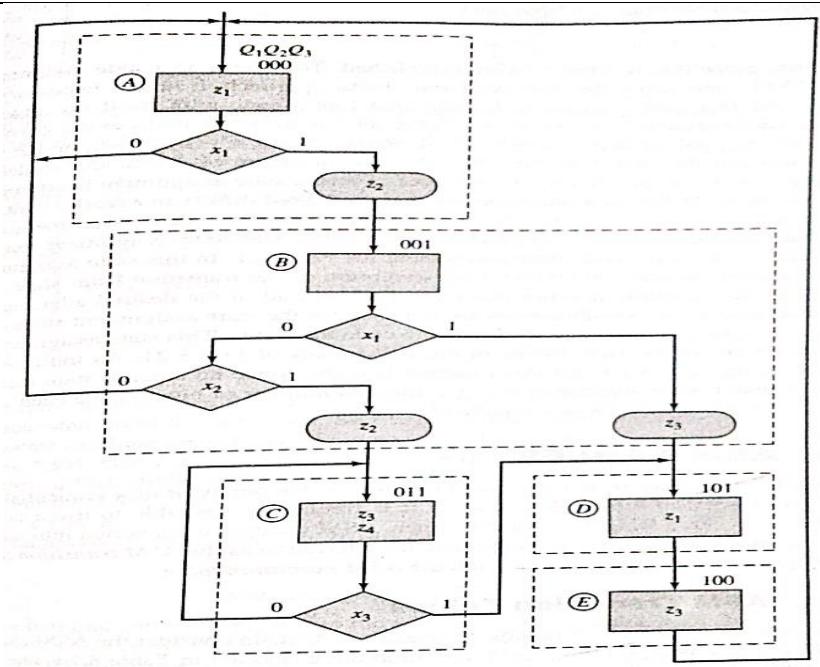
Semester: III

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC3PCDCD


Max Marks: 100


Course: Digital Circuit Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Express the function i) $T = r(\bar{q} + s)(\bar{r} + \bar{q})$ into Maxterm canonical form ii) $Y = \bar{a}bc + c\bar{d} + ac\bar{d}$ into Minterm canonical form	CO 1	PO 1	10
		b)	Determine minimal sum and minimal product using K-map $f(a, b, c, d) = \sum m(1, 2, 3, 4, 9, 10) + \sum d(0, 14, 15)$	CO 1	PO 1	10
			OR			
	2	a)	Given the logical equation $Y = ab + (a' + b')c + ab$ i) Simplify and realize the equation using NAND gates only ii) Express the function as Standard SOP and Standard POS form iii) Express the function as prime implicants and prime implicants	CO 1	PO 1	6
		b)	Construct a combinational circuit that has 4-input and 1-output, indicates when numbers are divisible by 2 or 7.	CO 1	PO 1	8
		c)	Obtain minimal SOP expression using K-Map and realize the simplified expression using NAND gates only. $f(w, x, y, z) = \sum m(0, 2, 3, 7, 8, 9, 10)$	CO 1	PO 1	6
UNIT - II						
	3	a)	Illustrate the functionality of Carry Look Ahead Adder	CO 1	PO 1	10
		b)	Design Half Adder and Half Subtractor using 4:1 Mux.	CO 3	PO 3	6
		c)	Explain working of priority Encoder with necessary diagrams.	CO 1	PO 1	4
			OR			
	4	a)	Realize Binary full adder and full Subtractor using 2:4 Decoder and NAND gate	CO 1	PO 1	8
		b)	Illustrate how PLA can be used for combinational logic design with reference to the functions. Assume 3X4X2 PLA is available. $f_1(X, Y, Z) = \sum m(0, 1, 3, 4)$ $f_2(X, Y, Z) = \sum m(1, 2, 3, 4, 5)$.	CO 3	PO 3	6

	c)	Illustrate the functionality of ROM and PLA	CO 1	PO 1	6										
		UNIT - III													
5	a)	What is Race around condition? Explain how it is eliminated by using Master Slave JK Flip flop. Analyze your solution with appropriate logic diagrams. Also draw the waveforms.	CO 1	PO 1	10										
	b)	Design a synchronous counter using JK Flip-flop to count the sequence 0-5-3-4-1-6-0 by obtaining minimal sum equations.	CO 3	PO 3	10										
		OR													
6	a)	Design and explain a 4 bit shift register using positive edge triggered D FF to operate as indicated in the table.	CO 3	PO 3	10										
		<table border="1"> <tr> <td>Mode Control S1 S0</td> <td>Operation</td> </tr> <tr> <td>0 0</td> <td>Hold</td> </tr> <tr> <td>0 1</td> <td>Shift Right</td> </tr> <tr> <td>1 0</td> <td>Shift Left</td> </tr> <tr> <td>1 1</td> <td>Parallel Operation</td> </tr> </table>	Mode Control S1 S0	Operation	0 0	Hold	0 1	Shift Right	1 0	Shift Left	1 1	Parallel Operation			
Mode Control S1 S0	Operation														
0 0	Hold														
0 1	Shift Right														
1 0	Shift Left														
1 1	Parallel Operation														
	b)	Construct Mod 6 Synchronous Up Counter using J K Flip-flop with necessary tables and waveforms.	CO 1	PO 1	10										
		UNIT - IV													
7	a)	Analyze the sequential circuit given in Fig.7a	CO 2	PO 2	10										
		Fig. 7a													
	b)	Design a synchronous circuit using positive edge triggered T-flip-flop to generate the following sequence 0-1-3-0 if input X=0 and 0-3-2-0 if input X=1. Provide an output to go high to indicate non-zero states irrespective of the sequence.	CO 3	PO 3	10										

			OR			
8	a)	Analyse the state graph given in Fig 8a and realize the circuit using JK FF.		<i>CO 2</i>	<i>PO 2</i>	10
		 Fig. 8a				
UNIT - V						
9	a)	Draw state diagram for Mealy state machine to detect sequence "1010" and also construct ASM chart for the same.		<i>CO 2</i>	<i>PO 2</i>	10
	b)	Design an ASM chart for binary multiplier		<i>CO 3</i>	<i>PO 3</i>	10
OR						
10	a)	Construct an ASM chart for a synchronous sequential network that is to recognize the input sequence of pairs $x_1 x_2 = 01, 01, 11, 00$. Output z is to be 1 when $x_1 x_2 = 00$.		<i>CO 2</i>	<i>PO 2</i>	10
	b)	Design circuit using D-flip flop for the given ASM chart.		<i>CO 3</i>	<i>PO 3</i>	10

B.M.S.C.E. - ODD SEM 2014-25