

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

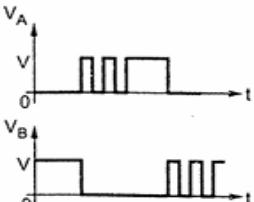
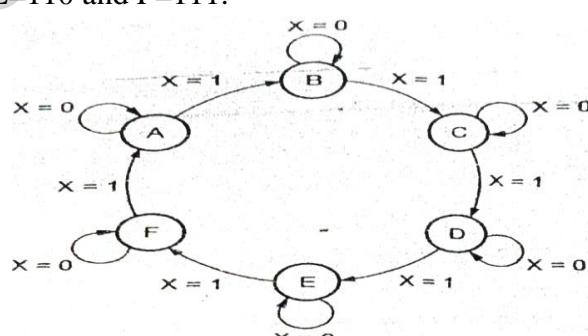
April 2024 Semester End Main Examinations

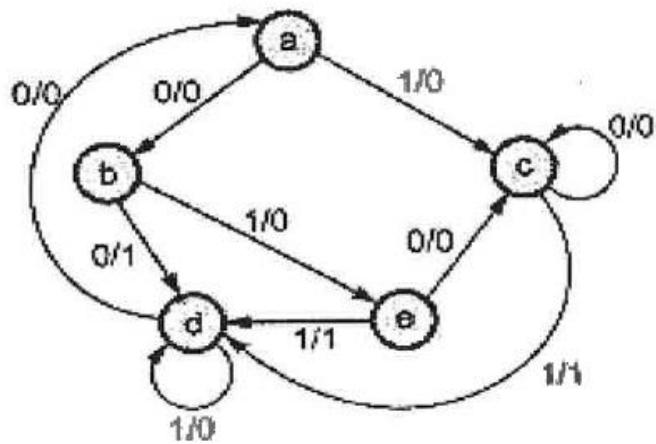
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCDCD

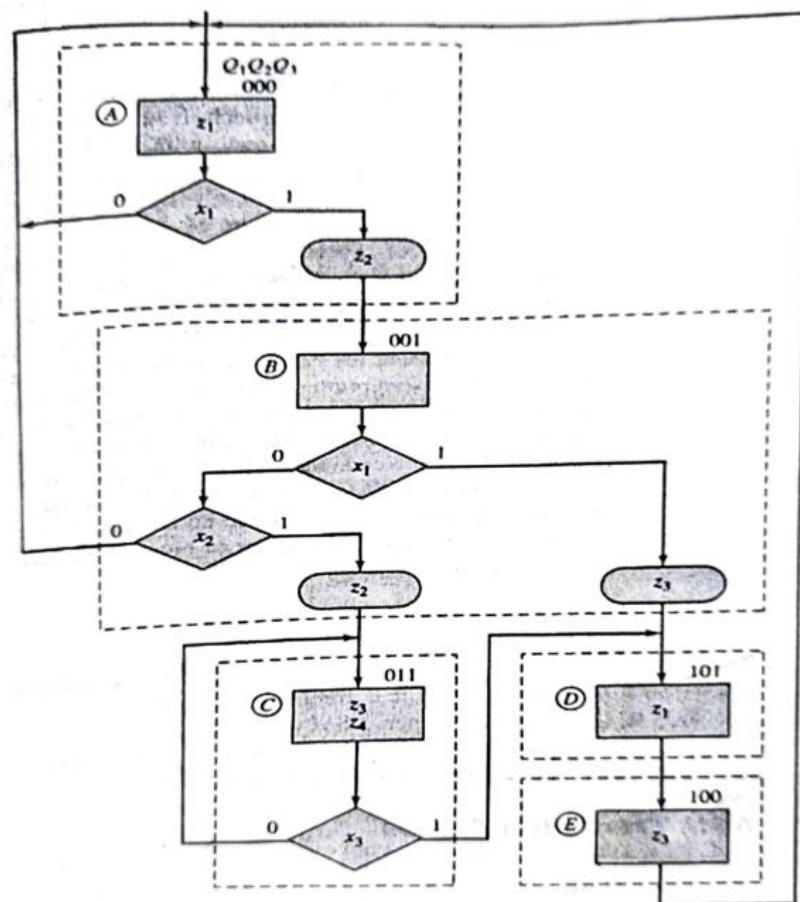
Course: Digital Circuit Design



Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	<p>Simplify the following Boolean function using K-map and implement.</p> <p>(i) $F_1(a,b,c,d)=\Sigma m(1,3,4,5,13,15)+\Sigma d(8,9,10,11)$ using NAND gates only.</p> <p>(ii) $F_2(a,b,c,d)=\Sigma m(0,3,4,7,8,10,12,14)+d(2,6)$ using NOR gates only.</p>	CO1	PO1	8
		b)	<p>In a simple copy machine, a stop signal, S, is to be generated to stop the machine operation and energize an indicator light whenever either of the following conditions exists:</p> <p>(1) there is no paper in the paper feeder tray; or</p> <p>(2) the two microswitches in the paper path are activated, indicating a jam in the paper path.</p> <p>The presence of paper in the feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches produces a logic signal (Q and R) that goes HIGH whenever paper is passing over the switch to activate it. Design the logic circuit to produce a HIGH at output signal S for the stated conditions.</p>	CO 3	PO 3	7
		c)	Determine the prime implicants and essential prime implicants for the given function $f(A,B,C,D) = \Sigma m(0,2,3,5,7,8,9,10,11,13,15)$	CO 1	PO 1	5
			UNIT - II			
	2	a)	Implement $Y = \overline{A} \overline{D} + B \overline{D} + \overline{B} \overline{C} D$ using 4:1 MUX using AB as a select line inputs.	CO 1	PO 1	7
		b)	Design a 8-bit Magnitude using two 4-bit comparators and logic gates.	CO 3	PO 3	7
		c)	Implement the following Boolean functions using 3x4x2 PLA also write the PLA table. $F_1(a,b,c) = \Sigma m(0,1,3,4)$ $F_2(a,b,c) = \Sigma m(1,2,3,4,5)$	CO 1	PO 1	6

UNIT - III																				
3	a)	Analyze the problem associated with the below timing diagram and explain how it can be avoided with a proper circuit and provide the correct timing diagram.	CO 2	PO 2	6															
	b)	Realize JK flipflop from SR flip flop.	CO 1	PO 1	6															
	c)	Design a MOD-6 asynchronous ripple counter using T flipflops.	CO 3	PO 3	8															
	OR																			
4	a)	Derive the characteristic equation of D, SR, T and JK flip flops.	CO 1	PO 1	8															
	b)	Design a 4-bit universal shift register using D flipflops and MUX with mode selection inputs S1 and S0. The register operates as follows:	CO 3	PO 3	4															
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>S1</th><th>S0</th><th>Register Operation</th></tr> <tr> <td>0</td><td>0</td><td>No change</td></tr> <tr> <td>0</td><td>1</td><td>Complement</td></tr> <tr> <td>1</td><td>0</td><td>Clear to 0</td></tr> <tr> <td>1</td><td>1</td><td>Load parallel data</td></tr> </table>	S1	S0	Register Operation	0	0	No change	0	1	Complement	1	0	Clear to 0	1	1	Load parallel data			
S1	S0	Register Operation																		
0	0	No change																		
0	1	Complement																		
1	0	Clear to 0																		
1	1	Load parallel data																		
	c)	Using negative edge triggered SR flip flops, design a counter which counts in the following Sequence: 000,111,110,101,100,011,010,001,000...	CO 3	PO 3	8															
	UNIT - IV																			
5	a)	Design a counter for the given state diagram below, using D-Flip Flops. Assume state assignment as A=000, B=010, C=011, D=101, E=110 and F=111.	CO 3	PO 3	8															
	b)	Design a Moore type sequence detector using D-flip flops to detect sequence 1101. Consider the non-overlapping case.	CO 3	PO 3	8															
	c)	Analyze the below given state diagram and write the reduced state diagram.	CO 2	PO 2	4															

UNIT - V

- | | | | | | |
|---|----|--|------|------|---|
| 6 | a) | Design an ASM chart to recognize the sequence $X_1X_2=01,01,11,00$. | CO 3 | PO 3 | 6 |
| | b) | Develop a ASM chart, if there is one input or control line C, if C=1 it works as up counter otherwise as a down counter. If it reaches to maximum value output turns to be high otherwise low. | CO 3 | PO 3 | 6 |
| | c) | Design a PLA with clocked D-flipflop for the ASM Chart given | CO 3 | PO 3 | 8 |

OR					
7	a)	Draw state diagram for Mealy state machine to detect sequence "1010" and also construct ASM chart for the same.	<i>CO 1</i>	<i>PO 1</i>	8
	b)	Develop the ASM chart for the following state machine: A two bit up counter with output Q_1Q_0 and enable signal 'X' is to be designed. IF 'X=0, counter changes the state as 00-01-10-11-00. If X=1, counter should remain in present state. Design a circuit using JK-flipflop and a suitable MUX.	<i>CO 3</i>	<i>PO 3</i>	12

B.M.S.C.E. - ODD SEM 2023-24