

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

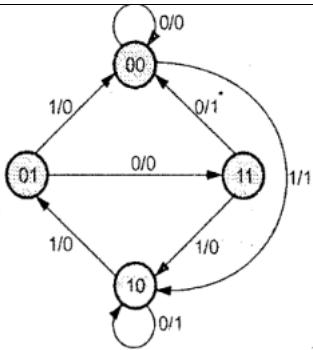
Programme: B.E.

Semester: III

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

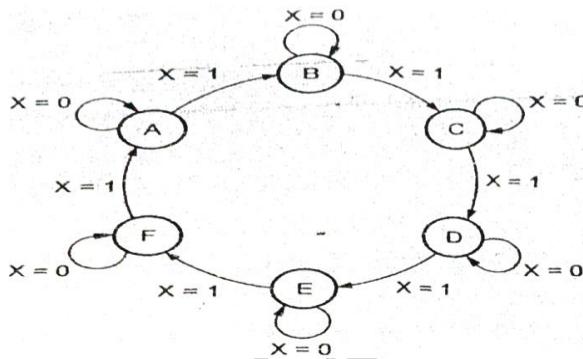
Course Code: 23EC3PCDCD

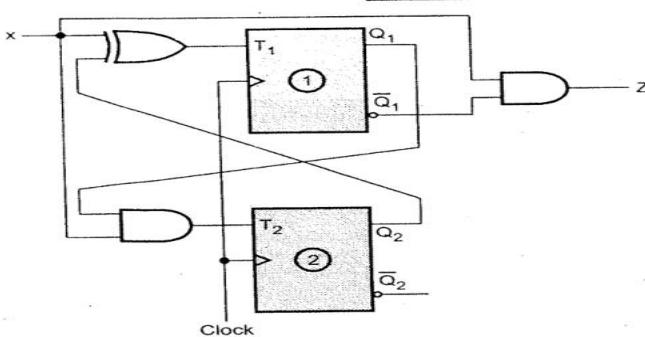

Max Marks: 100

Course: Digital Circuit Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Simplify the following in the respective canonical forms using Boolean laws (i) $F_1=a+ab+a\bar{c}d$ into minterms (ii) $F_2=a(b+c)(a+c+\bar{d})$ into maxterms	CO 1	PO 1	6
		b)	Determine prime implicant and essential prime implicant for the given function $F(a,b,c,d)=\pi M(0,1,4,5,8,9,11)+d(2,10)$. Simplify the given function using K-map and realize using logic gates	CO 1	PO 1	7
		c)	Simplify the following expression using Karnaugh map. $F(a,b,c,d)=\pi(0,3,4,7,8,10,12,14)+\sum d(2,6)$. Design the simplified expression using only NOR gates.	CO 1	PO 1	7
OR						
2	a)	In a copy machine, a stop signal(S) to be generated to stop the machine operation and energize an indicator light whenever either of the following conditions exists: (1) There is no paper in the paper feeder tray (signal P) or (2) The both the microswitches (Q and R) in the paper path are activated, indicating a jam in the paper path. The presence of paper in the feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches (Q and R) produces a logic signal that goes HIGH one after other whenever paper is passing over the switches. Design the logic circuit to produce a HIGH at output signal S for the stated conditions.	CO 1	PO 1	8	
	b)	Simplify the following function in SOP form using K-map $F(A,B,C,D)=AD + \bar{A} \bar{B} C + B\bar{D} + C\bar{D} + A\bar{C}$	CO 1	PO 1	6	
	c)	Express the following Boolean function into their proper canonical form (i) $M=p(\bar{q} + s)$ (ii) $N=(\bar{w} + x)(y + z)$	CO 1	PO 1	6	


UNIT - II																				
3	a)	Design a 4-bit parallel adder with look ahead carry generator.	<i>CO 3</i>	<i>PO 3</i>	7															
	b)	Design 3-bit gray to binary converter using 3-to-8-line decoder with active high outputs.	<i>CO 3</i>	<i>PO 3</i>	5															
	c)	Implement the following Boolean function (i) $Y=f(a,b,c,d)=\sum m(0,1,2,4,6,9,12,14)$ using 4:1 MUX with 'a' and 'b' as select lines. (ii) $Z=f(a,b,c,d)=\sum m(0,1,3,4,7,10,11,14,15)$ using 8:1 MUX with 'a' as input line	<i>CO 1</i>	<i>PO 1</i>	8															
OR																				
4	a)	Implement the following functions on 3x4x2 PLA. $F_1(X,Y,Z) = \sum m(0,1,3,4)$ $F_2(X,Y,Z) = \sum m(1,2,3,4,5)$	<i>CO 1</i>	<i>PO 1</i>	8															
	b)	Design a priority encoder for a system with 3 inputs, the middle bit with highest priority encoding to 10, the MSB with the next priority encoding to 11, while the LSB with least Priority encoding to 01.	<i>CO 3</i>	<i>PO 3</i>	8															
	c)	Design a 1-bit comparator using 2:4 decoder giving three outputs Greater(G), Equal(E), and Lower(L).	<i>CO 3</i>	<i>PO 3</i>	4															
UNIT - III																				
5	a)	Obtain the characteristic equation for SR and JK flip flops.	<i>CO 1</i>	<i>PO 1</i>	5															
	b)	Using a positive edge triggering SR flip flop, design a counter which counts in the following sequence: 000,111,110,101,100,011,010,001,000...	<i>CO 3</i>	<i>PO 3</i>	10															
	c)	Design a 4-bit universal shift register using D flipflops and MUX with mode selection inputs S1 and S0. The register operates as follows:	<i>CO 3</i>	<i>PO 3</i>	5															
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>S1</th><th>S0</th><th>Register Operation</th></tr> </thead> <tbody> <tr> <td>0</td><td>0</td><td>No change</td></tr> <tr> <td>0</td><td>1</td><td>Complement</td></tr> <tr> <td>1</td><td>0</td><td>Clear to 0</td></tr> <tr> <td>1</td><td>1</td><td>Load parallel data</td></tr> </tbody> </table>	S1	S0	Register Operation	0	0	No change	0	1	Complement	1	0	Clear to 0	1	1	Load parallel data			
S1	S0	Register Operation																		
0	0	No change																		
0	1	Complement																		
1	0	Clear to 0																		
1	1	Load parallel data																		
OR																				
6	a)	Design a MOD-6 asynchronous ripple counter using T Flip flops.	<i>CO 3</i>	<i>PO 3</i>	8															
	b)	Design JK flip flop from SR flip flop.	<i>CO 3</i>	<i>PO 3</i>	6															
	c)	Explain how switch debouncing can be rectified with circuit and timing diagram.	<i>CO 1</i>	<i>PO 1</i>	6															
UNIT - IV																				
7	a)	Design the sequential circuit for the state diagram given below using JK-Flipflops	<i>CO 3</i>	<i>PO 3</i>	10															


b) Design a Moore type sequence detector (using D-flip flop) to detect sequence "1101".

OR

8 a) Design a sequential circuit using D-FF for the given state diagram. Assume state assignment as A=000, B=010, C=011, D=101, E=110, and F=111

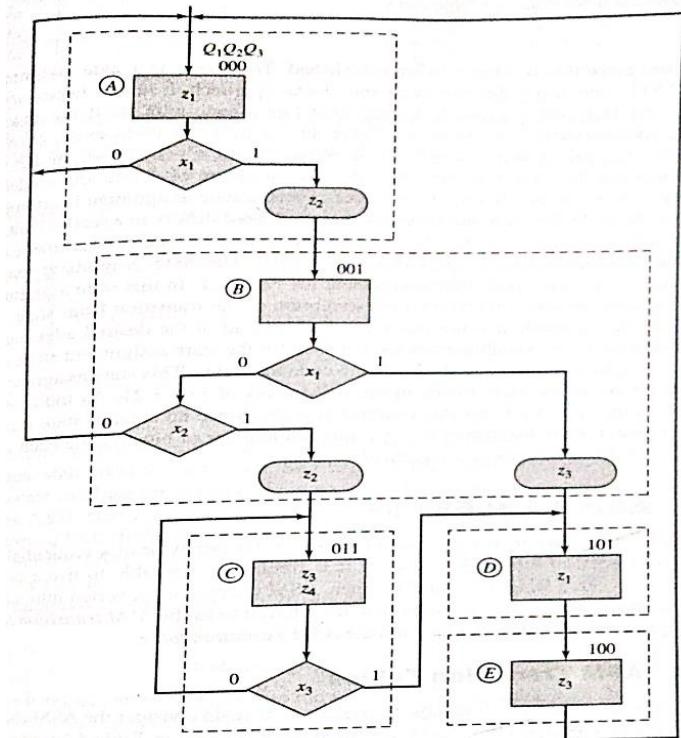
b) Analyze the circuit shown and obtain the, state table and state diagram.

UNIT - V

9 a) Develop the ASM chart for the following state machine: A two bit up counter with output Q_1Q_0 and enable signal 'X' is to be designed. If 'X=0, counter changes the state as 00-01-10-11-00. If $X=1$, counter should remain in present state. Design a circuit using JK-flipflop.

b) Design a circuit for the following ASM chart using D-flipflop.

CO 3 PO 3 10


CO 3 PO 3 10

10

CO 2 PO 2 10

CO 3 PO 3 10

10

OR

10	a)	Draw state diagram for Mealy state machine to detect sequence "1010" and also construct ASM chart for the same.	CO 3	PO 3	10
	b)	Design a ASM chart for 2 bits counter, if input line C=1 it works as up-counter otherwise it works as a down-counter. If it reaches to maximum value output turns to be high otherwise low.	CO 3	PO 3	5
	c)	Design an ASM chart to recognize the sequence $X_1X_2=01,01,11,00$.	CO 3	PO3	5
