

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCDSD

Course: Digital System Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Simplify the following expression using K-map and draw the logic diagram for the same $F(A, B, C, D) = \prod M(3, 6, 7, 9, 11, 12, 13, 14, 15) + d(0, 2)$		<i>CO 1</i>	<i>PO 1</i>	10	
		b)	With an example for each, explain the relational, reduction, concatenation, and replication operators used in Verilog.		-	-	10	
	UNIT - II							
	2	a)	Design a 3:8 decoder Verilog module instantiating 2:4 decoders. The 2:4 decoder is to be implemented using gate-level modelling. Also write the test-bench to verify the functionality of the 3:8 decoder thus designed.		<i>CO 3</i>	<i>PO 3</i>	10	
		b)	Implement the following function $f1(x, y, z) = \sum m(1, 2, 3, 7)$ and $f2(x, y, z) = \sum m(0, 1, 2, 6)$ using 3x4x2 PLA. Write the PLA table.		<i>CO 1</i>	<i>PO 1</i>	10	
	UNIT - III							
	3	a)	Use “forever” construct to generate a clock with time-period=40ns and a duty cycle of 15%, with initial value ‘0’.		<i>CO 1</i>	<i>PO 1</i>	5	
		b)	Write a Verilog program to calculate factorial of a 6-bit positive integer.		<i>CO 1</i>	<i>PO 1</i>	7	
		c)	Design a 4-bit priority encoder with LSB having the highest priority. Describe its behavior using behavioral describing in Verilog HDL. Write the testbench to test the designed encoder.		<i>CO 3</i>	<i>PO 3</i>	8	
	OR							
	4	a)	Apply the concept of blocking and non-blocking statements to develop two Verilog modules, respectively, to swap the contents of two registers: <ul style="list-style-type: none"> • with a temporary register • without a temporary register 		<i>CO 1</i>	<i>PO 1</i>	5	
		b)	Design a 4-bit ripple-carry adder using “generate” blocks. Instantiating full-adder modules implemented using half-adders.		<i>CO 3</i>	<i>PO 3</i>	7	
		c)	Evaluate the below Verilog code. Analyse and write the time instances and the values of each of the variable used here. Justify the same.		<i>CO 2</i>	<i>PO 2</i>	8	

```

module test();
    reg x,y,r,s,p,m;
    initial
        begin
            x = 1'b0;
            #5 y = 1'b1;
            fork
                #20 r = x;
                #15 s = y;
            join
            #40 x = 1'b1;
            fork
                #10 p = x;
                begin
                    #10 r = y;
                    #20 s = x;
                end
                #5 m = y;
            join
        end
    endmodule

```

UNIT - IV

5 a) Describe the behavior of the **SHIFT REGISTER** given below using Verilog. Draw the schematic for reference.

Mode Control		Register Operation
S1	S0	
0	0	No change
0	1	Shift Right
1	0	Shift Left
1	1	Parallel load

b) Design a synchronous counter for the counting sequence of **0-2-4-6-7-0** using T flip-flops. Assume that all the unused states make transition to count value '0'.

OR

6 a) Describe the behavior of T flip-flop in Verilog. Instantiate the same to implement a 3-bit asynchronous up-counter. Also write a test-bench to test the same.

b) Implement the following:

- (i) JK flip-flop using D flip-flop
- (ii) JK flip-flop using SR flip-flop

UNIT - V

7 a) Design a Mealy Serial Adder using necessary combinational logic and D flip-flops.

b) Design a sequence detector using Verilog to detect overlapped "0101" sequence. Also write the test bench to test the design.

CO 3 PO 3 10

CO 3 PO 3 10

CO 3 PO 3 10

CO 1 PO 1 10

CO 3 PO 3 10

CO 3 PO 3 10