

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCDSD

Course: Digital System Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Write the dataflow Verilog HDL code for a single bit magnitude comparator.	<i>CO 1</i>	<i>PO 1</i> 6
		b)	List and describe different Verilog operators	<i>CO 1</i>	<i>PO 1</i> 4
		c)	Simplify the following expression using K-map and draw the logic diagram for the same $F(A,B,C,D) = \sum m (0,2,3,6,7) + d(8,10,11,15)$	<i>CO 1</i>	<i>PO 1</i> 10
UNIT - II					
	2	a)	Design a 8X1 multiplexer using 4X1 multiplexers.	<i>CO 3</i>	<i>PO 3</i> 5
		b)	Implement full adder using multiplexer.	<i>CO 1</i>	<i>PO 1</i> 5
		c)	Design a comparator to compare the two 2 bit numbers using K-Map minimization.	<i>CO 3</i>	<i>PO 3</i> 10
UNIT - III					
	3	a)	Generate a clock with time period = 40 units and a duty cycle of 50%, using forever loop statement.	<i>CO 1</i>	<i>PO 1</i> 4
		b)	Design an n-bit adder using the parameter feature and Verilog generate statement.	<i>CO 3</i>	<i>PO 3</i> 10
		c)	Differentiate the blocking and Non-blocking statements using a sample code and explain the functionality of the code	<i>CO 1</i>	<i>PO 1</i> 6
OR					
	4	a)	Design a 4X2 Priority Encoder which functions when reset=0 and enable =1 to set the priority during encoding Describe its behavior using behavioral describing in Verilog HDL	<i>CO 3</i>	<i>PO 3</i> 10
		b)	Design 4-bit ripple carry adder using for-loop and behavioral modeling.	<i>CO 3</i>	<i>PO 3</i> 10

UNIT - IV					
5	a)	Build the positive edge triggered master slave flip flop using D latches /Flip-flops. Explain its working principle.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Implement the JK flip-flop using Verilog behavioral modeling. Write the test code to test the functionality.	<i>CO 1</i>	<i>PO 1</i>	10
OR					
6	a)	Design a universal shift register with the help of 4X1 Mux to perform different operation of Hold, shift right, shift left and parallel load. Explain its functionality in detail.	<i>CO 3</i>	<i>PO 3</i>	10
	b)	Realize the JK flip-flop using SR flip-flop. Write the truth table and NAND structure for both the flip flops.	<i>CO 1</i>	<i>PO 1</i>	10
UNIT - V					
7	a)	Differentiate the Mealy and Moore FSM with examples state diagrams	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Design the mealy FSM using Verilog HDL coding to detect the sequence 1001 by considering the overlapping case.	<i>CO 3</i>	<i>PO3</i>	10
