

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 22EC3PCDSD

Max Marks: 100

Course: Digital System Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Simplify the expression below using K-map where the output is a 1 for the BCD inputs 7,8,9 and draw the logic diagram for the same. $F(A,B,C,D) = \sum m(0, 1, 2, 8, 9, 12, 13) + d(10, 11, 14, 15)$ Also provide the expression when the don't care terms above are NOT considered.	CO 1	PO1	12
	b)	Compare the various types of modeling provided by VERILOG HDL.	CO 1	PO1	8
OR					
2	a)	Discuss the components of Verilog module with block diagram and example.	CO 1	PO1	8
	b)	Design a circuit that accepts a 3-bit unsigned number X (X2X1X0) and generates an output binary number Y = 3X + 1 a. Write out a truth table b. Find the minimal POS equations for each output bit c. Show the implementation in OR-AND	CO 3	PO3	12
UNIT – II					
3	a)	Implement a 32 x 1 Mux using 8 x 1 Mux and 4 x1 Mux.	CO 1	PO1	6
	b)	Implement The following functions using PLA: (i) $F1 (A, B, C) = (3, 5, 6, 7)$ and (ii) $F2 (A, B, C) = (0, 2, 4, 7)$.	CO 1	PO1	10
	c)	Implement 4 to 16 line decoder using 2:4 Line decoder.	CO 1	PO1	4
OR					
4	a)	Design a 2-bit magnitude comparator. Write the logic diagram and all the logic expressions.	CO 3	PO3	10
	b)	Implement The following functions using PLA: (i) $F1 (A, B, C) = (0, 1, 3, 4)$ and (ii) $F2 (A, B, C) = (1, 2, 3, 4, 5)$.	CO 1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - III																																																											
5	a)	<p>Use “initial” and “always” blocks to generate a clock with time period = 40 units and a duty cycle of 15%, with initial value 0. Use the generated clock to draw the expected waveform of a positive-edge triggered D flip-flop with the following “D” input:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time</td><td>0</td><td>20</td><td>40</td><td>60</td><td>80</td><td>100</td></tr> <tr> <td>D</td><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td></tr> </table>	Time	0	20	40	60	80	100	D	0	1	1	0	1	0	<i>CO 3</i>	<i>PO3</i>	10																																										
Time	0	20	40	60	80	100																																																							
D	0	1	1	0	1	0																																																							
	b)	Implement NAND structure of JK latch using Verilog.	<i>CO 1</i>	<i>PO1</i>	10																																																								
		OR																																																											
6	a)	<p>Design a priority encoder according to the table below. Describe its behavior using behavioral describing in Verilog HDL.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th colspan="5">Inputs</th> <th colspan="2">Outputs</th> </tr> <tr> <th>Reset(R)</th> <th>Enable(E)</th> <th>A</th> <th>B</th> <th>C</th> <th>Y1</th> <th>Y0</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>X</td> <td>X</td> <td>X</td> <td>X</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>0</td> <td>X</td> <td>X</td> <td>X</td> <td>Y1</td> <td>Y0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> <td>X</td> <td>X</td> <td>0</td> <td>1</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>X</td> <td>1</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>Y1</td> <td>Y0</td> </tr> </tbody> </table>	Inputs					Outputs		Reset(R)	Enable(E)	A	B	C	Y1	Y0	1	X	X	X	X	0	0	0	0	X	X	X	Y1	Y0	0	1	1	X	X	0	1	0	1	0	1	X	1	0	0	1	0	0	1	1	1	0	1	0	0	0	Y1	Y0	<i>CO 3</i>	<i>PO3</i>	10
Inputs					Outputs																																																								
Reset(R)	Enable(E)	A	B	C	Y1	Y0																																																							
1	X	X	X	X	0	0																																																							
0	0	X	X	X	Y1	Y0																																																							
0	1	1	X	X	0	1																																																							
0	1	0	1	X	1	0																																																							
0	1	0	0	1	1	1																																																							
0	1	0	0	0	Y1	Y0																																																							
	b)	<p>Analyze CODE1 and CODE2 modules, find the common error in both these codes and if that's corrected what values do we get on y1 and y2 in both the codes.</p> <pre> module CODE1(input a,b,output y1,y2); initial begin y1=a; y2=b; end always@(*) begin y1=y2; y2=y1; end endmodule module CODE2(input a,b,output y1,y2); initial begin y1=a; y2=b; end always@(*) begin y1<=y2; y2<=y1; end endmodule </pre>	<i>CO 2</i>	<i>PO2</i>	10																																																								
		UNIT - IV																																																											
7	a)	Analyze the problem with a simple JK Flip flop and provide a solution to overcome this problem. Use a Timing diagram to explain your solution.	<i>CO 2</i>	<i>PO2</i>	10																																																								

	b)	Convert i) SR Flip Flop to T Flip Flop ii) JK Flip Flop to T Flip flop	CO 1	PO1	10
		OR			
8	a)	With a neat schematic diagram, Analyze the operation and working of a 4-bit UNIVERSAL shift register. Sketch the data shifting operation using a Timing diagram	CO 2	PO2	10
	b)	Design a SYNCHRONOUS counter using T flip flops for the following COUNT Sequence: $000 \rightarrow 001 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 111 \rightarrow 000$.	CO 3	PO3	10
		UNIT – V			
9	a)	Design a 3-bit Moore sequence detector to detect the sequence 101 with Overlapping using T flip-flops.	CO 3	PO3	10
	b)	Design a Non-Overlapping Mealy Sequence Detector with Verilog Code for the sequence "1010".	CO 3	PO3	10
		OR			
10	a)	Analyse the below given sequential logic circuit and write the state diagram.	CO 2	PO2	10
	b)	Design a Overlapping Mealy Sequence Detector with Verilog Code for the sequence "11011".	CO 3	PO3	10
