

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

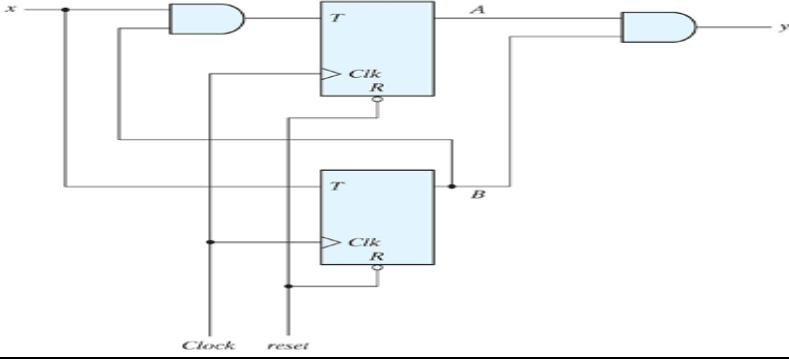
June 2025 Semester End Main Examinations

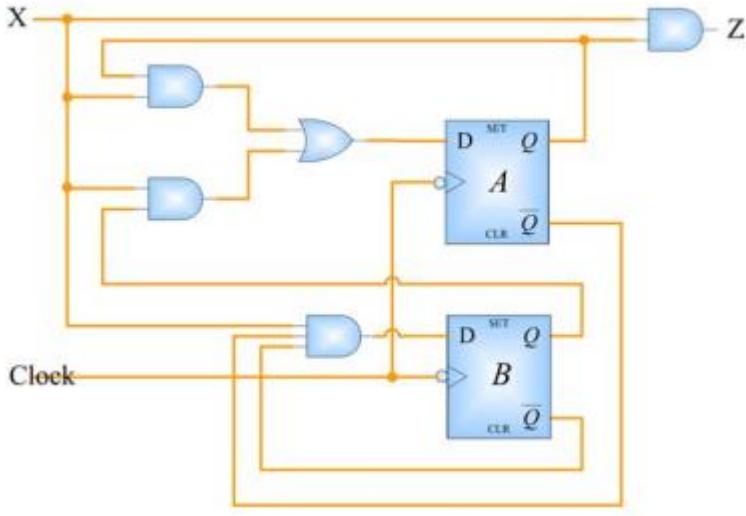
Programme: B.E.

Semester: III

Branch: Electronics and Communication Engineering

Duration: 3 hrs.


Course Code: 22EC3PCDSD


Max Marks: 100

Course: Digital System Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Reduce the expression $f(P,Q,R,S) = \sum m(0,2,5,7,9,11) + d(3,8,10,12,14)$ using K-MAP and implement using NAND logic.	<i>CO 1</i>	<i>PO1</i>	10
		b)	Explain the operators used in Verilog HDL with syntax and examples.	-	-	10
		OR				
	2	a)	Explain the VLSI design flow with neat flow diagram.	-	-	10
		b)	$f(P,Q,R,S) = \pi M(0,2,5,4,9,11) + d(1,8,10,14)$ using K-MAP and implement using NOR logic.	<i>CO 1</i>	<i>PO1</i>	10
		UNIT – II				
	3	a)	Design a 4-bit Ripple Cary adder using Verilog HDL by instantiating Full adders.	<i>CO 3</i>	<i>PO3</i>	10
		b)	Design a 2-bit comparator with a relevant truth table, k-map, logical expressions, and logic diagram.	<i>CO 3</i>	<i>PO3</i>	10
		OR				
	4	a)	Design a 4-bit BCD adder using parallel adders and with neat logic diagram, truth table and logic expression.	<i>CO 3</i>	<i>PO3</i>	10
		b)	Design a 2-bit assigned array multiplier using Verilog gate level description with neat logic diagram and logical expressions.	<i>CO 3</i>	<i>PO3</i>	10
		UNIT - III				
	5	a)	Explain the Verilog conditional and multiway branching statement with examples.	-	-	10
		b)	Design a 16x1 Multiplexer by instantiating 4x1 multiplexers using Verilog HDL. Also write the behavioral description for 4x1 multiplexers. Also write the test bench to test the functionality.	<i>CO 3</i>	<i>PO3</i>	10
		OR				
	6	a)	Explain the Verilog timing control statements with examples for each.	-	-	10

	b)	Design an 8-to-3 priority encoder using a Verilog case statement with the help of the truth table of the encoder. Also write the test bench to test the logic.	CO 3	PO3	10															
UNIT - IV																				
7	a)	Derive the characteristic equation for the JK and SR flip-flops.	CO1	PO1	6															
	b)	Design a 3-bit synchronous counter using D-flip-flop.	CO3	PO3	10															
	c)	Design a JK Flip-flop by applying Verilog if-else-if statement.	CO3	PO3	4															
OR																				
8	a)	Convert D Flip-flop to SR flip flop and T-flip-flop to D flip-flop.	CO1	PO1	6															
	b)	Design a 4-bit universal shift register to perform following Operations given in table below. Explain the design in detail.	CO3	PO3	10															
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">S0</th> <th style="text-align: center;">S1</th> <th style="text-align: center;">Mode of Operation</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td>Locked state (No change)</td> </tr> <tr> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> <td>Shift-Left</td> </tr> <tr> <td style="text-align: center;">1</td> <td style="text-align: center;">0</td> <td>Shift-Right</td> </tr> <tr> <td style="text-align: center;">1</td> <td style="text-align: center;">1</td> <td>Parallel Loading</td> </tr> </tbody> </table>	S0	S1	Mode of Operation	0	0	Locked state (No change)	0	1	Shift-Left	1	0	Shift-Right	1	1	Parallel Loading			
S0	S1	Mode of Operation																		
0	0	Locked state (No change)																		
0	1	Shift-Left																		
1	0	Shift-Right																		
1	1	Parallel Loading																		
	c)	Design shift-left and shift-right registers using Verilog case statement.	CO3	PO3	4															
UNIT - V																				
9	a)	Analyse the below given circuit and obtain the state diagram.	CO2	PO2	10															
	b)	Design a Verilog Moore FSM with one input X and one output Z. The FSM asserts its output Z when it recognizes the following input sequence: "1011". Also write the test code to test the functionality of the design.	CO3	PO3	10															
		OR																		

	10	a)	Design a Verilog Mealy FSM with to detect the sequence “101”. Also write the test code to test the functionality of the design.	CO3	PO3	10
	b)	Analysse the below given circuit and obtain the state diagram.		CO2	PO2	10

REAPPEAR EXAMS 2014-25