

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3ESHDL

Course: HDL Programming

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks																
1	a)	Discuss the top down design Methodologies with an example of 4 to 16 decoder using 2 to 4 decoders.	<i>CO 1</i>	<i>PO 1</i>	10																
	b)	Discuss in detail the typical VLSI design flow with diagram.	-	-	10																
UNIT - II																					
2	a)	Develop a data flow description to implement the logic mentioned below: B is a BCD input, while Y is a BCD output, the logic multiplies B with 5 and generates Y.	<i>CO 3</i>	<i>PO 3</i>	8																
	b)	Design a Carry look ahead adder , assuming FULL ADDER delay to generate SUM as 2 ns and Carry as 4 ns	<i>CO 3</i>	<i>PO 3</i>	12																
UNIT - III																					
3	a)	Analyze the usage of Verilog “if-else-if” block for describing the behavior of an 4-Bit comparator also write the test code.	<i>CO 2</i>	<i>PO 2</i>	10																
	b)	Design a clock generator that divides the input clock by 3 with a duty cycle of 50%.	<i>CO 3</i>	<i>PO 3</i>	10																
OR																					
4	a)	Design a JK flip-flop with a case statement on output Q also write the testbench to test the functionality.	<i>CO 3</i>	<i>PO 3</i>	8																
	b)	Design a 4 bit loadable-synchronous counter as described in the below table. Also write the test bench.	<i>CO 3</i>	<i>PO 3</i>	12																
<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>CLK</th> <th>Reset</th> <th>Load</th> <th>output Q[3:0]</th> </tr> </thead> <tbody> <tr> <td>Rising Edge</td> <td>1</td> <td>X</td> <td>4'd0</td> </tr> <tr> <td></td> <td>0</td> <td>1</td> <td>Load_value</td> </tr> <tr> <td></td> <td>0</td> <td>0</td> <td>Q+1</td> </tr> </tbody> </table>						CLK	Reset	Load	output Q[3:0]	Rising Edge	1	X	4'd0		0	1	Load_value		0	0	Q+1
CLK	Reset	Load	output Q[3:0]																		
Rising Edge	1	X	4'd0																		
	0	1	Load_value																		
	0	0	Q+1																		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Analyse the given code, write the Synthesized logic diagram	<i>CO 2</i>	<i>PO 2</i>	8
		<pre> module A(W,X,Y,Z); input W,X,Y; output Z; reg R; assign Z = R; always@(negedge W or posedge X) begin if(X) R <= 0; else if(Y) R <= ~R; end </pre>			
UNIT - V					
6	a)	Explain the general architecture of FPGA	-	-	8
	b)	Design a BCD to Excess-3 Mealy FSM using Verilog HDL. For this design draw the state diagram. Write the required test bench to verify its functionality.	<i>CO 3</i>	<i>PO 3</i>	12
	OR				
7	a)	Design a Mealy FSM to detect the non-overlapping sequence 1010 using Verilog HDL	<i>CO 3</i>	<i>PO 3</i>	10
	b)	Identify the type of FSM from the below State Table 1.1 And complete the output Z values from Table 1.2 also write the Verilog code to implement the given FSM.	<i>CO 2</i>	<i>PO2</i>	10

Present State(PS)	INPUT (X)	Next State(NS)	Output(Z)
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

Table 1.1

Time(ns)	X	Z
0	0	
5	1	
10	0	
20	1	
25	0	
30	1	
35	1	
40	1	
45	0	
50	0	
60	0	
65	1	
70	1	
80	0	
85	1	
90	1	
100	0	

Table 1.2
