

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC3ESHDL

Max Marks: 100

Course: HDL Programming

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the design flow of VLSI IC circuits.	-	-	10
	b)	Differentiate between the system tasks (i) \$monitor and \$display (ii) \$finish and \$stop	-	-	5
	c)	Analyze the code snippet to identify the syntax errors and rectify the same. Also identify and explain the method of port-mapping used in module instantiation.	CO 2	PO 2	5
<pre> module stimulus; wire a1, b1; reg c1; example1 inst(a1, b1, c1); initial begin a = 1'b1; b=1'b0; #5 \$finish; end endmodule module example1(input a, b, output reg c); and g1(c, a, b); endmodule </pre>					
OR					
2	a)	Explain the components of a Verilog module. Also elaborate the port connection rules used in Verilog.	-	-	10
	b)	Explain different levels of abstraction in Verilog.	-	-	5

Important Note: Completing your answers compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>In the Verilog code snippet given below, identify all the keywords and the data types of all the variables with their bit-width.</p> <pre>module ex2 (input [1:0] a, b, output [7:0] c); reg r1; reg [7:0] mem [0:1023]; endmodule</pre>	CO 2	PO 2	5																																			
		UNIT - II																																						
3	a)	Develop a Verilog code for a 4-bit carry lookahead adder using continuous assignment statements.	CO 3	PO 3	8																																			
	b)	<p>Deduce the design block for the given Verilog code and draw the waveforms for the stimulus given:</p> <pre>module ex3(output out, input a, b, c); wire e; and #5 a1(e, a, b); or #4 a2(out, e, c); endmodule</pre> <div style="border: 1px solid black; padding: 10px; min-height: 200px;"> <pre>module stimulus; reg A, B, C; wire OUT; ex3 example(OUT, A, B, C); initial begin A = 1'b0, B = 1'b0, C = 1'b0; #10 A = 1'b1, B = 1'b1, C = 1'b1; #10 A = 1'b1, B = 1'b0, C = 1'b0; #10 \$finish; end endmodule</pre> </div>	CO 2	PO 2	7																																			
	c)	Find the value of y, if $y = ((A+B) \&& (C)) + (D << 2)$; and y is declared as a 4-bit reg, given $A = 1101$, $B = 1010$, $C = 0111$ and $D = 0101$.	CO 1	PO 1	5																																			
		OR																																						
4	a)	Develop a 3:8 decoder Verilog module instantiating 2:4decoders. Implement the 2:4 decoder using gate-level modelling.	CO 3	PO 3	8																																			
	b)	Analyze the below given Verilog code, find the values s1 and s2 as per the timing units given in table.	CO 2	PO 2	7																																			
		<pre>module ex4(input a, b, output s1, s2); assign #10 s1 = a ^ b; assign #10 s2 = a s1; endmodule</pre>																																						
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th></th> <th>T = 100</th> <th>T = 150</th> <th>T = 165</th> <th>T = 200</th> <th>T = 250</th> <th>T = 300</th> </tr> </thead> <tbody> <tr> <td>a</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>b</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td>s1</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>s2</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>		T = 100	T = 150	T = 165	T = 200	T = 250	T = 300	a	1	0	0	1	0	1	b	1	1	1	0	0	1	s1	0						s2	0								
	T = 100	T = 150	T = 165	T = 200	T = 250	T = 300																																		
a	1	0	0	1	0	1																																		
b	1	1	1	0	0	1																																		
s1	0																																							
s2	0																																							

	c)	Implement a 4x1 multiplexer using conditional operators. Draw the mux tree for reference.	CO 1	PO 1	5
UNIT - III					
5	a)	Describe the behavior of the SHIFT REGISTER given below using Verilog. Draw the schematic for reference.	CO 1	PO 1	10
OR					
6	a)	Using blocking and non-blocking statements, develop two Verilog modules respectively, to swap the contents of two registers: <ul style="list-style-type: none"> with a temporary register without a temporary register 	CO 1	PO 1	5
	b)	Use “forever” construct to generate a clock with time-period=40ns and a duty cycle of 15%, with initial value ‘0’.	CO 1	PO 1	5
	c)	Describe the behavior of T flip-flop in Verilog. Use “generate loops” and instantiate the T flip-flops to implement a 3-bit asynchronous up-counter.	CO 3	PO 3	10
UNIT - IV					
7	a)	With relevant examples, explain how design partitioning can affect the output of the logic synthesis tool.	-	-	8
	b)	Analyze the below given code, and draw the expected logic circuit after logic synthesis (Assume the logic unit to be a mux). Give an alternate Verilog code which can produce the same output. <div style="border: 1px solid black; padding: 5px; margin-top: 5px;"> <pre>module ex5 (input [3:0] a, b, c, d, input [1:0] s, output [3:0] out); assign out = s[1]?(s[0]?d:c):(s[0]?b:a); endmodule</pre> </div>	CO 2	PO 2	8
	c)	Analyze the Verilog code snippet given below and indicate the hardware realized by standard Synthesis tools. Suggest a preferred coding alternative. <div style="border: 1px solid black; padding: 5px; margin-top: 5px;"> <pre>module ex6 (input ct, a, output reg out); always @ (ct or a) if (ct) out = a; endmodule</pre> </div>	CO 2	PO 2	4

			OR		
	8	a)	With flow diagram, explain the RTL to gate level logic synthesis flow.	-	-
		b)	Analyze the below given code, complete the code (ex7) and draw the expected logic circuit after logic synthesis.	CO 2	PO 2
			<pre>module ex7 (clk, en, a, b, c, d, y); always @ (posedge clk) y = !(en & (a b) & (c d)); endmodule</pre>		8
			Compare the Verilog code snippets of “ex7” and “ex8” and draw the inferred logic circuit for “ex8”.		
			<pre>module ex8 (en, a, b, c, d, out); y = !(en & (a b) & (c d)); endmodule</pre>		
		c)	Analyze the below given code, and draw the expected logic circuit after logic synthesis.	CO 2	PO 2
			<pre>module ex9 (input sin, clk, output [3:0] q); always @ (posedge clk) begin q[0] <= sin; q[1] <= q[0]; q[2] <= q[1]; q[3] <= q[2]; end endmodule</pre>		4
UNIT - V					
	9	a)	Design a Verilog Mealy-type BCD to Ex-3 code converter.	CO 3	PO 3
		b)	With a neat block diagram, explain Mealy and Moore model in sequential circuit design. Highlight the difference between Mealy and Moore FSM considering the state diagram for a sequence detector to detect a sequence “011” in a stream of binary data.	-	-
OR					
	10	a)	Develop a Moore FSM using Verilog to detect overlapped sequence of “0101” in a stream of 1’s and 0’s. Also write the test bench to test the design.	CO 3	PO3
		b)	Explain the architecture of FPGA with the help of block diagram.	-	-
