

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCSAS

Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 12.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine whether the following signal are periodic or not. If periodic find the period. **05**

(i) $x(t) = 3\cos(250\pi t) + 5\sin(200\pi t)$ (ii) $x[n] = e^{j(\frac{\pi}{4})n}$

b) Evaluate the following expressions **05**

(i) $\sum_{n=-\infty}^{\infty} e^{2n} \delta(n-2)$ (ii) $\sum_{n=-5}^{5} (\sin 2n) \delta(n+7)$

c) A signal $y(t)$ is defined below. Sketch the signal and Perform the following operations
(i) $x(2t)$ (ii) $x(2t+3)$ (iii) $x(1-2t)$ (iv) $x(-t-1)$
if $x(t) = \begin{cases} (t+1); & -1 \leq t \leq 0 \\ (-t+1); & 0 \leq t \leq 1 \end{cases}$ **10**

UNIT - II

2 a) A system is defined as below **10**
 $y(t) = x^2(-t)$
 Check the system for following properties. Also show the mathematics behind all the properties.
 (i) linearity (ii) memory (iii) causality (iv) time invariance (v) stability

b) A system is defined as below **10**
 $y[n] = \sum_{k=n_0}^n x[k]$
 Check the system for following properties. Also show the mathematics behind all the properties.
 (i) linearity (ii) memory (iii) causality (iv) time invariance (v) stability

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

3 a) The input $x(t)$ and impulse response $h(t)$ of a LTI system are given below. 10
 $x(t) = 2u(t-1) - 2u(t-3)$ And $h(t) = u(t+1) - 2u(t-1) + u(t+3)$

Sketch $x(t)$ and $h(t)$. Find the output of the system and sketch the output.

b) An impulse response is given by 06

$$h[n] = \left(\frac{1}{2}\right)^n u(n+3). \text{ Test the following properties}$$

(i) Memory (ii) causality (iii) stability

c) Draw the direct form 2 structure for the following system 04

$$y(t) = x(t) + 2\frac{d}{dt}x(t) + 3\frac{d^2}{dt^2}x(t) - 4\frac{d}{dt}y(t) + 5\frac{d^2}{dt^2}y(t)$$

OR

4 a) The input $x(t)$ and impulse response $h(t)$ of a LTI system are given below. 10
 $x(t) = u(t+1) - u(t-1)$ And $h(t) = 2x(t)$

Sketch $x(t)$ and $h(t)$. Find the output of the system and sketch the output.

b) Let $h_1(t), h_2(t), h_3(t), h_4(t)$ be impulse response of LTI systems. Construct a system with impulse response $h(t)$ using $h_1(t), h_2(t), h_3(t), h_4(t)$ as subsystems. Draw the interconnection of the systems to obtain

$$(i) h(t) = h_1(t) + \{h_2(t) * h_3(t)\} + h_4(t)$$

$$(ii) h(t) = h_1(t) * \{h_2(t) + h_3(t)\} * h_4(t)$$

c) Draw the direct form 2 structure for the following system. 04

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 5y(t) = \frac{d}{dt}x(t) + 4x(t)$$

UNIT - IV

5 a) Find the DTFT of following signals 08

$$(i) x[n] = (0.5)^{n+2}u[n]$$

$$(ii) x[n] = n(0.5)^{2n}u[n]$$

b) State and prove frequency shift property of DTFT. 06

c) Find the frequency response of $h[n] = \left(\frac{1}{2}\right)^n u(n)$ 06

OR

6 a) State and prove time shift property of DTFS. 06

b) Determine the Fourier series coefficients for the signal below. 08

$$x[n] = 1 + \sin \Omega_0 n + 3 \cos \Omega_0 n + \cos(2\Omega_0 n + \frac{\pi}{2})$$

c) Find the system transfer function for the following difference equation using DTFT 06

$$y[n] - \frac{1}{2}y[n-1] = x[n]$$

Hence find the impulse response of the system.

UNIT - V

7 a) Find the Z transform of the signal and plot the ROC. 07

$$x[n] = \left(\frac{1}{4}\right)^n u(n) + \left(\frac{1}{2}\right)^n u(n)$$

b) Solve the following difference equation using Z transform 07

$$y[n] - 0.8y[n-1] = x[n]$$

where, input, $x[n] = (0.5)^n u[n]$, and, $y[-1] = 2$

c) Discuss the properties of ROC with an example each. 06
