

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

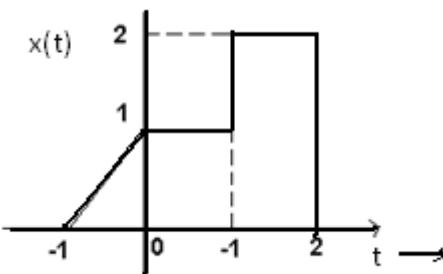
Branch: Electronics and Communication Engineering

Course Code: 22EC3PCSAS

Course: Signals and Systems

Semester: III

Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Given $x(t)$ as shown in figure 1(b) , Sketch the following 10

- i) $x(2t-1)$
- ii) $x(4-t)$
- iii) $x(t)u(t)$
- iv) $x(-t/2)$
- v) $x(t)+x(-t)$

b) Identify whether the signal is periodic or non-periodic, if periodic find the fundamental period 06

- i) $x(n) = \cos\left(\frac{n\pi}{12}\right) + \sin\left(\frac{n\pi}{18}\right)$
- ii) $x(n) = \cos\left(\frac{4n\pi}{13} + \pi\right)$

c) Plot the signal 04
 $x(t) = u(t+2) + r(t+1) - r(t) - u(t-2) - u(t-4)$

UNIT - II

2 a) For the following systems determine whether the system is Linear, Causal, Stable, Time- invariant and Memory less 10

- i) $y(n) = ax[n] + b$
- ii) $y(t) = e^{(x(t))}$

b) A system consists of several subsystems connected as shown in figure 2(b). Find the operator H relating $x(t)$ to $y(t)$ for the subsystem operators given by; 06

$$H_1: y_1(t) = x_1(t)x_1(t-1)$$

$$H_2: y_2(t) = |x_2(t)|$$

$$H_3: y_3(t) = 1 + 2x_3(t)$$

$$H_4: y_4(t) = \cos(x_4(t))$$

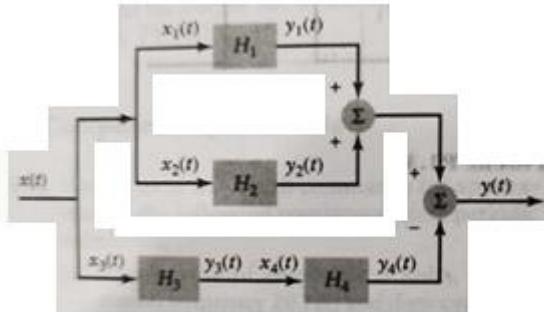


Figure 2(b)

c) Derive the condition for stability of an LTI discrete system. 04

UNIT - III

3 a) Determine output $y(t)$ for an input $x(t) = e^{-3t} u(t)$ and unit impulse response $h(t) = u(t-2)$ using convolution integral. 06

b) An LTI system is characterized by $h[n] = (1/4)^n u[n]$. compute the output of the system at time $n=0, 5 \& 10$, when input is $x[n] = u[n]$ 08

c) Consider two systems having impulse responses $h_1(t) = e^{-3t} u(t)$ and $h_2(t) = 2 e^{-t} u(t)$ find the overall impulse responses when the systems are connected in i) Parallel and ii) series 06

OR

4 a) For each impulse responses listed below. Determine whether the systems are memoryless, Causal and stable.
 (i) $h(t) = e^{-2|t|}$
 (ii) $h(n) = \left(\frac{1}{3}\right)^n u(n+1)$ 08

b) Find the natural response of the system described by
 $y(n) + 3y(n-1) + 2y(n-2) = 2x(n) + 3x(n-1)$ with initial conditions $y(-1)=7$
 $y(-2)=-3$ 08

c) Represent following difference equation in Direct form-I and Direct form-II block diagram representation. 04

$$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} - \frac{dx(t)}{dt} = y(t)$$

UNIT - IV

5 a) The unit impulse response of an LTI system is $h[n] = \alpha^n u[n]$. Find the response of the system using DTFT to an input defined by $x[n] = \beta^n u[n]$, where $\alpha, \beta < 1$ and $\alpha \neq \beta$ 10

b) Find the DTFS representation of the given waveform shown in fig 5(b). 10

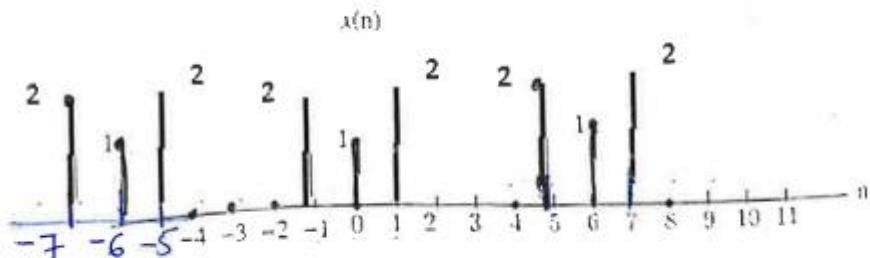


Figure 5(b)

OR

6 a) Find the DTFT for the following signal $x(n)$ and draw its spectrum $X(n)=a^n u(n)$; magnitude of $a<1$. **08**

b) Evaluate the DTFS representation for the signals **08**
 i) $x(n)=\cos[(\pi/8)n]$
 ii) $x(n)=\cos[(\pi/3)n] + \cos[(\pi/4)n]$

c) State and describe sampling theorem. **04**

UNIT - V

7 a) Solve the given difference equation using Unilateral Z transform for the given initial conditions $y[-1]=2$ and input $x[n]=u[n]$.
 $y(n) - 0.1 y(n-1) = x(n)$ **06**

b) Find the Z-transform of the following sequences and find the ROC **08**

i) $x[n]=\left[\frac{1}{2}\right]^n \sin \Omega_0 n u[n]$

ii) $x[n]=\left(\frac{1}{2}\right)^n \{u[n]-u[n-10]\}$

c) A causal system is represented by the following difference equation **06**
 $y[n]-0.25y(n-2)=x(n)-0.5x(n-1)$
 a. Determine the system function $H(z)$ and the corresponding ROC
 b. Determine the impulse response of the system in analytical form
