

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCSAS

Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT-I			CO	PO	Marks
1	a)	<p>Determine whether the following signals are periodic or not. Find the fundamental period if periodic.</p> <p>i) $x(t) = \cos(t) + \sin(\sqrt{2}t)$ ii) $x(n) = \cos\left(\frac{\pi n}{12}\right) \sin\left(\frac{\pi n}{18}\right)$ iii) $x(n) = (-1)^{n^2}$</p>	CO1	PO1	10
	b)	Investigate the unit ramp signal $r(t)$ is an energy or a power signal.	CO1	PO1	6
	c)	Sketch the even and odd parts of a signal $x(t)$.	CO1	PO1	4
UNIT-II					
2	a)	<p>Evaluate the overall impulse response $h(n)$ of a system given below which is an interconnection of three subsystems represented by the impulse responses $h_1(n) = \left(\frac{1}{2}\right)^n u(n+2)$, $h_2(n) = \delta(n)$ and $h_3(n) = u(n-1)$.</p>	CO1	PO1	6
	b)	Determine whether the system given below is a linear, time invariant, stable, memoryless and causal.	CO2	PO2	8
		$y(t) = \int_{-\infty}^t x(\tau) d\tau$			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	What is an invertible system? Elaborate schematically. Give any two examples.	CO2	PO2	6
		UNIT-III			
3	a)	A signal $x(t) = e^{-at}u(t)$ is passed through an LTI system with unit sample response $h(t) = u(t)$, $a > 0$; find the response of the system.	CO2	PO2	06
	b)	Compute the convolution sum of the following two sequences using graphical method. $x(n) = [1,2,3,4]$ for $-1 \leq n \leq 2$, $h(n) = [1,2,3]$ for $0 \leq n \leq 2$.	CO2	PO2	08
	c)	Analyze an LTI system with impulse response $h(n) = a^n u(n)$ with $0 < a < 1$ for memoryless causality and stability properties.	CO2	PO2	06
		OR			
4	a)	Find the response of a discrete time system represented by the difference equation $y(n) - \frac{1}{2}y(n-1) - \frac{1}{2}y(n-2) = \left(\frac{1}{2}\right)^n$ for $n \geq 0$ with initial condition $y(-1) = 1, y(-2) = 0$	CO2	PO2	10
	b)	Determine the natural response for the continuous time system $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = 2x(t) + \frac{dx}{dt}$ with initial conditions $y(0) = 3, \frac{dy}{dt} \Big _{t=0} = -7$.	CO2	PO2	06
	c)	Draw the block diagram representation for an LTI system described as $y(n) + \frac{1}{2}y(n-1) - \frac{1}{3}y(n-3) = x(n) + 2x(n-2)$.	CO1	PO1	04
		UNIT-IV			
5	a)	Find the discrete time Fourier Series coefficients for the sequence $x(n) = 2 + 2\cos\left(\frac{\pi n}{4}\right) + \cos\left(\frac{\pi n}{2}\right) + \frac{1}{2}\cos\left(\frac{3\pi n}{4}\right)$. Also plot magnitude spectrum.	CO1	PO1	06
	b)	One period of the DTFS of a signal $x(n)$ is given by $X(k) = \left(\frac{1}{2}\right)^k$ for $0 \leq k \leq 9$ Find the time domain signal $x(n)$ assuming $N = 10$.	CO1	PO1	06
	c)	Find the DTFT of unit step sequence $u(n)$ using suitable properties.	CO1	PO1	08
		OR			
6	a)	Determine the DTFS representation for the signal $x(n)$ and sketch i) magnitude spectrum. ii) Phase Spectrum. iii) power spectrum density. $x(n) = \cos\left(\frac{6\pi n}{13} + \frac{\pi}{6}\right)$	CO 2	PO 2	10
	b)	The impulse response of a continuous time LTI system is given by	CO 2	PO 2	10

		$h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} \cdot u(t)$. Find Frequency response and plot the magnitude and phase response.			
UNIT-V					
7	a)	A Causal LTI system described by the difference equation $y(n) = y(n-1) + y(n-2) + x(n-1)$. i) find the system function ii) plot the poles and zeros iii) indicate the ROC iv) find the unit sample response v) Find a stable non-causal unit sample response.	<i>CO2</i>	<i>PO2</i>	10
	b)	Find the response of a system described as with the help of Z transform representation $y(n) + 3y(n-1) = x(n)$ with $x(n) = u(n)$ and $y(-1) = 1$	<i>CO2</i>	<i>PO2</i>	10
