

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCSAS

Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Sketch the even and odd components of the given signal 	CO 1	PO 1	07
	b)	Find the fundamental period of the given signal i) $x(n) = \cos\left(\frac{\pi}{4}n\right) + \sin\left(\frac{\pi}{8}n\right) - 2\cos\left(\frac{\pi}{2}n\right)$ ii) $x(t) = 3\cos\sqrt{2}t + 4\sin 5\sqrt{2}t$	CO 1	PO 1	06
	c)	Determine whether each of the following signal as energy signal or power signal or neither of these two i) $x(t) = e^{-at} u(t)$ ii) $x[n] = 2e^{j3n}$	CO 1	PO 1	07
UNIT - II					
2	a)	A system consists of several subsystems connected as shown in below fig. Find the operator T relating $x(t)$ to $y(t)$ for the subsystem operators given by $T_1: y_1(t) = x_1(t) x_1(t-1)$ $T_2: y_2(t) = x_2(t) $ $T_3: y_3(t) = 1 + 2x_3(t)$ $T_4: y_4(t) = \cos(x_4(t))$ 	CO 1	PO 1	06
	b)	For the following systems, determine whether the system is Linear, Time-Invariant, Memoryless, Causal and Stable.	CO 2	PO 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		i) $y(t) = x\left(\frac{t}{2}\right)$ ii) $y(n) = n \cdot x(n)$			
	c)	Check whether the given systems is invertible? If invertible then finds its inverse system i) $y(n) = x(1 - n)$ ii) $y(t) = x(t - 6)$	CO 2	PO 2	04
		UNIT - III			
3	a)	Design Direct form 1 and Direct form 2 for the given differential equation $2 \frac{dy}{dt} + \frac{1}{3} \int y(t) dt + 5 y(t) = \frac{dx}{dt} + 6x(t)$	CO 3	PO 3	06
	b)	Determine the total response of the system $y''(t) + 3y'(t) + 2y(t) = 2x(t)$ with $y(0) = -1$ and $y'(0) = 1$ and $x(t) = \cos t \cdot u(t)$	CO 2	PO 2	08
	c)	Obtain the discrete time convolution sum for the given signal $y(n) = \beta^n \cdot u(n) * \alpha^n \cdot u(n)$ where $ \beta < 1$ and $ \alpha < 1$	CO 1	PO 1	06
		OR			
4	a)	Consider an LTI system with unit impulse response $h(t) = e^{-t} \cdot u(t)$ and input $x(t) = e^{-3t} \{u(t) - u(t - 2)\}$ obtain the convolution output.	CO 2	PO 2	10
	b)	Determine the total response of the system for the given difference equation $y(n) - \frac{1}{4}y(n - 1) - \frac{1}{8}y(n - 2) = x(n) + x(n - 1)$ with input $x(n) = \left(\frac{1}{8}\right)^n u(n)$	CO 2	PO 2	10
		UNIT - IV			
5	a)	Determine the DTFS representation for the signal $x(n)$ and sketch i) magnitude spectrum. ii) Phase Spectrum. iii) power spectrum density. $x(n) = \cos\left(\frac{6\pi n}{13} + \frac{\pi}{6}\right)$	CO 2	PO 2	10
	b)	The impulse response of a continuous time LTI system is given by $h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} \cdot u(t)$. Find Frequency response and plot the magnitude and phase response.	CO 2	PO 2	10
		OR			
6	a)	Determine the Nyquist rate for the following signals i) $x_1(t) = \text{Sinc}(200t)$ ii) $x_2(t) = \text{Sinc}^2(200t)$	CO 2	PO 2	06

	b)	Determine the DTFT of the signal $x(n) = \cos\left(\frac{\pi n}{5}\right) + j\sin\left(\frac{\pi n}{5}\right) \text{ where } n \leq 10 \text{ and } 0 \text{ otherwise}$	CO 2	PO 2	06
	c)	Consider the signal, $x(n) = 2 + 2\cos\left(\frac{\pi n}{4}\right) + \cos\left(\frac{\pi n}{2}\right) + \frac{1}{2}\cos\left(\frac{3\pi n}{4}\right)$ i) Determine and sketch the power spectral density ii) Evaluate the power of the signal	CO 2	PO 2	08
UNIT - V					
7	a)	Evaluate the given expression and obtain $x(n)$ $X(z) = \frac{-1+5z^{-1}}{1-1.5z^{-1}+0.5z^{-2}}$ with ROC $ z > 1$	CO 1	PO 1	06
	b)	A LTI discrete time system is given by the system function, $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ specify the ROC of $H(z)$ and determine $h(n)$ for the following Conditions. (i) System is stable. (ii) System is Causal.	CO 2	PO 2	06
	c)	Solve the following difference equation using unilateral Z-transform. $y(n) - 1.5y(n-1) + 0.5y(n-2) = x(n) \text{ for } n \geq 0$ with initial conditions $y(-1) = 4, y(-2) = 10 \text{ and } x(n) = \left(\frac{1}{4}\right)^n u(n).$	CO 1	PO 1	08
