

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCSAS

Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 10.08.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine whether the following signals are Periodic or not ? If periodic determine fundamental period 06

$$i) x[n] = \cos(0.01\pi n)$$

$$ii) x[n] = \cos\left(\frac{n}{8}\right) \cos\left(\frac{n\pi}{8}\right)$$

$$iii) x[n] = e^{j\frac{\pi}{4}n}$$

b) Determine whether each of the following signal as energy signal or power signal or neither of these two 06

$$i) x(t) = e^{-at} u(t)$$

$$ii) x[n] = (-0.5)^n u(n)$$

$$iii) x[n'] = 2e^{j3n}$$

c) Find and sketch even and odd components of the following signal 08

$$i) x[n] = e^{-(n/4)} u(n)$$

$$ii) x(t) = t \quad 0 \leq t \leq 1 \\ = 2 - t \quad 1 \leq t \leq 2$$

UNIT - II

2 a) For the following system, determine whether the system is a) linear b) time-invariant c) Memoryless d) causal e) Stable 10

$$i) y[n] = g(n)x(n)$$

$$ii) y(t) = e^{x(t)}$$

$$iii) y[n] = \log_{10}(|x(n)|)$$

$$iv) y(t) = x(t) \cos \omega t$$

b) Are the following systems invertible ? If not explain why? If invertible find the inverse system 04

$$a) y(n) = x^2(n)$$

$$b) y(n) = x(n) + 2x(n-1)$$

c) Consider three system with the following input output relationships 06

system 1; $y(n)=x(-n)$

System 2: $y(n)=ax(n-1) + bx(n) + cx(n+1)$

System 3: $y(n)=x(-n)$

Where a, b, c are real constants. Suppose these systems are connected in series as shown in figure 2c below. Find the input output relationship for the overall cascade system. Is this system is linear ? Time invariant ?

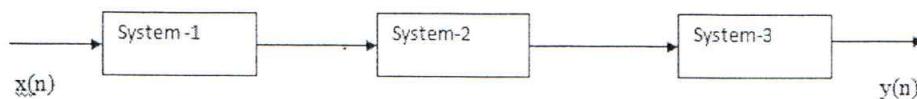


Figure 2c

UNIT - III

3 a) Consider an LTI System with input $x[n]$ and unit impulse response $h[n]$ specified as follows. Compute the output signal $y[n]$. Plot the output signal. 08

$$x[n] = 2^n u[-n]$$

$$h[n] = u[n]$$

b) The system formed by connecting two sub systems in cascade. The impulse response of the each system is given by 06

$$h_1(t) = e^{-2t} u(t)$$

$$h_2(t) = 2e^{-t} u(t)$$

- Find the impulse response $h(t)$ of the overall system
- Determine if the overall system is BIBO stable

c) For each of the impulse response listed below, determine whether system is memoryless , causal and stable 06

$$h_1(t) = e^{-2|t|}$$

$$h[n] = 2u[n] - 2u[n-1]$$

OR

4 a) For the differential equation given below find the natural response, forced response and total Response 08

$$\frac{d^2y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 4y(t) = 2e^{-2t} u(t)$$

$$y(0) = 0 \quad y'(0) = 1$$

b) Determine the forced response for the following system 08

$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + x(n-1)$$

for the input signal $x(n) = \left(\frac{1}{8}\right)^n u(n)$. Assume zero initial conditions.

c) Represent the following differential equations in Direct Form-I and Direct form -II 04

$$\frac{d^2y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt}$$

UNIT - IV

5 a) Evaluate the DTFS representation of the signal 10

$$x[n] = \sin\left(\frac{4\pi n}{21}\right) + \cos\left(\frac{10\pi n}{21}\right) + 1$$

Sketch the magnitude and phase spectra

b) State Convolution and Modulation properties of DTFS. 04
 c) Find $x[n]$ for $X(k)$ given below 06

$$X(k) = \cos\left(\frac{6\pi k}{17}\right)$$

OR

6 a) Find the DTFT of the signal 08

$$x[n] = \left(\frac{1}{2}\right)^n u(n-4)$$

Sketch magnitude and phase spectra

b) Using partial fraction expansion determine the inverse DTFT for the signal 06

$$X(e^{j\Omega}) = \frac{3 - \frac{1}{4}e^{-j\Omega}}{-\frac{1}{16}e^{-j2\Omega} + 1}$$

c) If the unit impulse response of a LTI system is $h(n) = \alpha^n u(n)$. Find the response of the system to an input defined by $x[n] = \beta^n u(n)$. Where $\alpha, \beta < 1$ and $\alpha \neq \beta$ 06

UNIT - V

7 a) A causal system is represented by the difference equation 06

$$y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$$

i) Find the system function $H(z)$ and corresponding ROC
 ii) Find unit impulse response of the system in analytical form
 iii) Find the frequency response of the system

b) The output of a discrete time LTI system is found to be 08

$$2\left(\frac{1}{3}\right)^n u(n)$$

when the input $x(n)$ is $u(n)$

i) Find the impulse response $h(n)$ of the system
 ii) Investigate the stability of the system
 iii) Find the out $y(n)$ when the input $x(n)$ is $\left(\frac{1}{2}\right)^n u(n)$

c) Find the Z-transform of the following signal and specify its ROC 06

i) $x[n] = \left(-\frac{1}{2}\right)^n u(-n) + 2\left(\frac{1}{4}\right)u(n)$

ii) $y[n] = \left(-\frac{1}{2}\right)^n u(n) + 2\left(\frac{1}{4}\right)u(n)$
