

B.M.S. College of Engineering, Bengaluru-560019

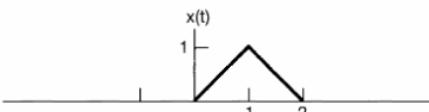
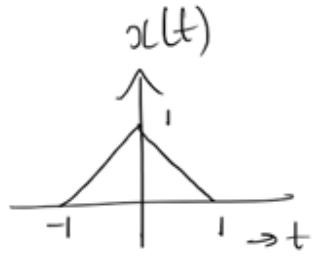
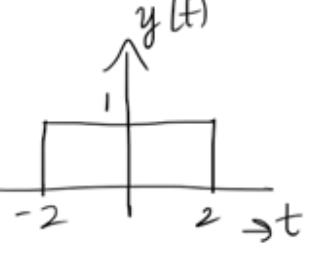
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCSAS




Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	<p>1 a) Identify whether the system is periodic or non-periodic, if periodic find the fundamental period</p> <p>i) $x[n] = \sin\left(\frac{3\pi}{4}n\right) + \cos\left(\frac{5\pi}{7}n\right)$</p> <p>ii) $x(t) = a \cos(\sqrt{2}t) + b \sin\left(\frac{t}{4}\right)$</p>	<p><i>CO 1</i></p> <p><i>PO1</i></p> <p>5</p>			
	<p>b) a) Determine and sketch the even and odd parts of the signals depicted in figure.</p> <p>(i)</p> <p>(ii) $x[n] = \alpha^n u[n]$, where $\alpha < 1$</p>	<p><i>CO 1</i></p> <p><i>PO1</i></p> <p>5</p>			
	<p>c) Given the signal $x(t)$ & $y(t)$, Plot</p> <p>i. $x(t) + y(t)$ ii. $y(t) - x(t)$ iii. $y(t/2)$ iv. $x(2t-3)$ v. $x(t+5)$</p>	<p><i>CO1</i></p> <p><i>PO1</i></p> <p>10</p>			

UNIT - II					
2	a)	Determine whether the following systems are Memory based, Causal, Time invariant, Linear, Invertible and Stable. a. $y[n]=nx[n]$ b. $y(t)=2t+x(t)$	<i>CO 2</i>	<i>PO2</i>	10
	b)	Represent following equations in Direct form-I and Direct form-II block diagram representation. i) $y(n) + 0.5y(n-1) - 0.25y(n-2) + 0.33y(n-3) = x(n) + 3x(n-1) + 2x(n-2)$ ii) $20 \left(\frac{dy}{dt} \right) \left(\frac{dy}{dt} \right) + 1 \left(\frac{dy}{dt} \right) + 23 y(t) = x(t) + 0.7 \left(\frac{dx}{dt} \right)$	<i>CO 2</i>	<i>PO2</i>	10
UNIT - III					
3	a)	Analyze the given equation and determine the convolution of two signal using convolution integral $x(t) = u(t) - u(t-4)$ $h(t) = t(u(t) - u(t-4))$	<i>CO 2</i>	<i>PO2</i>	10
	b)	A discrete time LTI system is characterized by the impulse response $h[n]=u[n]$ Find its output when the input is $x[n]=[1,1,2,5]$ Also find $y[-19]$, $y[0]$, $y[2]$, $y[15]$ and $y[28]$	<i>CO 2</i>	<i>PO2</i>	10
OR					
4	a)	Determine whether the system given below is memoryless, causal and stable i) $h[n]=2u[n]-2u[n-1]$ ii) $h(t) = e^{-4 t }$	<i>CO 2</i>	<i>PO2</i>	10
	b)	For the given LTI system, Evaluate the convolution sum using graphical method. $x[n]=\{-1,1,0,1,-1\}$; $h[n]=\{1,2,3\}$. Assume that the origin of the input signal and the impulse response is at 0 and 2 respectively.	<i>CO 2</i>	<i>PO2</i>	10
UNIT - IV					
5	a)	Find the DTFS co-efficients of the given waveform	<i>CO 2</i>	<i>PO2</i>	10
		$x(n)$ 			

	b)	State all the properties of DTFT with relevant equations.	CO 2	PO2	10
UNIT – V					
6	a)	For the signal given Determine the Z-transform , ROC and pole zero plot. i) $x(n) = 7\left(\frac{1}{3}\right)^n u(n) - 6\left(\frac{1}{2}\right)^n u(n)$ ii) $x(n) = (-a^n)u(-n - 1)$	CO 2	PO2	10
	b)	Find the inverse Z-transform using partial fraction expansion method $X(Z) = \frac{1+2Z^{-1}+Z^{-2}}{1-\frac{3}{2}Z^{-1}+\frac{1}{2}Z^{-2}} \quad Z >1$	CO 2	PO2	10
OR					
7	a)	Find the natural response of the system described by the difference equation $y[n]-(1/4)y[n-1]-(1/8)y[n-2]=x[n]+x[n-1]$ with $y[-1]=0$ and $y[-2]=1$	CO 2	PO2	10
	b)	A causal LTI system is described by the difference equation $y[n]=y[n-1] +y[n-2] +x[n-1]$ i) Find the system function $H[z]$. ii) Plot the poles and zeros and indicate the ROC. iii) Also determine the impulse response of the given system.	CO 2	PO2	10
