

B.M.S. College of Engineering, Bengaluru-560019

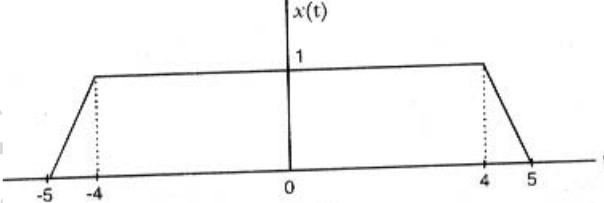
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Electronics and Communication Engineering


Duration: 3 hrs.

Course Code: 23EC3PCSAS / 22EC3PCSAS

Max Marks: 100

Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Distinguish between i) Continuous and Discrete Time signal ii) Even and Odd Signal iii) Energy and Power Signal	CO 1	PO 1	6
	b)	Consider the sequence $x[n] = \begin{cases} n & 0 \leq n \leq 2 \\ n-2 & 3 \leq n \leq 5 \\ 0 & \text{otherwise} \end{cases}$. Sketch the following signals i) $y[n] = x[2n] u[n-2]$ ii) $y[n] = x[-3n] u[-n]$	CO 1	PO 1	8
	c)	Determine the energy of the signal shown in fig 1.c Fig 1.c	CO 1	PO 1	6
OR					
2	a)	Determine whether the following signals are periodic or not. If periodic find its fundamental period i) $x(t) = 10\cos(\pi t)\sin(4\pi t)$ ii) $x(t) = \cos(\frac{\pi}{4}t + \frac{\pi}{2}) + \cos(\sqrt{2}t)$	CO 1	PO 1	8
	b)	Sketch the even & odd parts of the following signals i) $x(t) = u(t) - u(t-4)$ ii) $x[n] = (0.8)^n u[n]$	CO 1	PO 1	6
	c)	A periodic signal with period $T=10$ over one cycle is given by $x(t) = -3t$; $-5 < t < 5$. Sketch $x(t)$ and find its power.	CO 1	PO 1	6
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.					

UNIT - II					
3	a)	Discuss the properties of system with example.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Check whether the following system is i) BIBO stable, ii) linear, iii) time invariant, iv) causal v) memoryless i) $y[n] = \log_{10}(x[n])$ ii) $y(t) = \frac{dx(t)}{dt}$	<i>CO 2</i>	<i>PO 2</i>	10
OR					
4	a)	Check whether the following system is i) BIBO stable, ii) linear, iii) time invariant, iv) causal v) memory less i) $y[n] = g[n]x[n]$ ii) $y[n] = nx[n]$	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Determine a continuous time LTI system characterized by impulse response $h(t) = e^{2t}u(t-1)$ is i) stable ii) causal iii) memoryless iv) linear and v) invertible	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - III					
5	a)	Evaluate $y[n] = x[n] * h[n]$; where $x[n] = \alpha^n u[n]$; $ \alpha < 1$ and $h[n] = \beta^n u[n]$; $ \beta < 1$	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Consider an LTI system having an impulse response $h(t) = e^{-t}u(t)$ and input $x(t) = e^{-3t}\{u(t) - u(t-2)\}$. Find the output of an LTI system.	<i>CO 2</i>	<i>PO 2</i>	10
OR					
6	a)	Determine the convolution of the signals below $x(t) = u(t) - u(t-2)$ $h(t) = t(u(t) - u(t-1))$	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Find the total response for the system described by the following difference equation $y(n) - \frac{1}{9}y(n-2) = x(n-1)$ with $y(-1)=1$ and $y(-2)=0$ and $x(n)=u(n)$	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - IV					
7	a)	State and prove the following properties of discrete time Fourier series i) Time shift ii) frequency shift	<i>CO 1</i>	<i>PO 1</i>	6
	b)	Determine the DTFS of the signal $x(n) = \cos\left(\frac{\pi}{3}n\right)$ and draw the spectrum.	<i>CO 2</i>	<i>PO 2</i>	7
	c)	Find the DTFT of the signal $x(n) = \alpha^n \sin(\Omega_o n)u(n)$; $ \alpha < 1$.	<i>CO 2</i>	<i>PO 2</i>	7
OR					
8	a)	Compute the inverse Fourier transform of the signal $X(j\omega) = \frac{-j\omega}{2 + 3j\omega + (j\omega)^2}$	<i>CO 2</i>	<i>PO 2</i>	6

	b)	State and prove any four properties of DTFT.	CO 1	PO 1	8
	c)	Obtain the frequency response and the impulse response of the system described by the difference equation $y(n) + \frac{1}{2}y(n-1) = x(n) - 2x(n-1)$	CO 2	PO 2	6
		UNIT - V			
9	a)	Determine the impulse response $h(n)$ and transfer function $H(Z)$ of an LTI system with input $x(n) = \left(\frac{1}{2}\right)^n u(n) - \frac{1}{4}\left(\frac{1}{2}\right)^{n-1} u(n-1)$ and output $y(n) = \left(\frac{1}{3}\right)^n u(n)$	CO 2	PO 2	10
	b)	A Causal LTI system is described by the difference equation $y(n) = y(n-1) + y(n-2) + x(n-1)$. Find the system function $H(Z)$ and impulse response. Plot the poles and zeros and indicate ROC.	CO 2	PO 2	10
		OR			
10	a)	A LTI discrete time system is given by the system function $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ Specify the ROC of $H(Z)$ and find $h(n)$ (i) for stable system. (ii) for causal system	CO 2	PO 2	10
	b)	Solve the following difference equation using unilateral Z-transform $y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = x(n)$ for $n \geq 0$ With initial conditions $y(-1)=4$, $y(-2)=10$ and $x(n)=(1/4)^n u(n)$	CO 2	PO 2	10
