

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

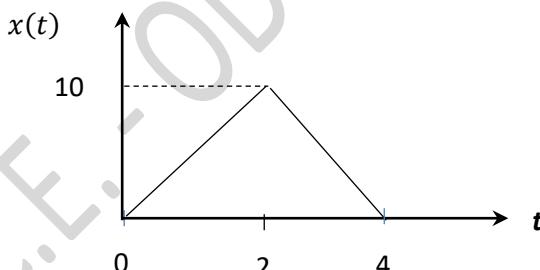
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCSAS


Course: Signals and Systems

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the classifications of signals with a neat plots and expressions.	CO 1	PO 1	08
	b)	Determine whether the following signals are periodic or not. If periodic find its fundamental period. i) $x(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$ ii) $x(n) = \sin(2n)$	CO 1	PO 1	06
	c)	For the signal $x(t)$ shown in the Fig.Q1(c), find and plot the following, i) $x(-2t - 4)$ ii) $x(-3t + 2)$ Fig.Q1(c)	CO 1	PO 1	06
UNIT - II					
2	a)	Define system. Discuss different properties of systems	CO 1	PO 1	08
	b)	Determine whether the system $y(t) = e^{x(t)}$ is, i) Linear ii) Time-Invariant iii) Causal iv) Memory v) stable	CO 2	PO 2	06
	c)	Find the overall operator of a system whose output signal $y(n)$ is given by, $y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$. Also draw the block diagram representation.	CO 1	PO 1	06
UNIT - III					
3	a)	Evaluate discrete time convolution sum $x(n)=u(n)-u(n-3)$, $h(n)=u(n)$	CO 1	PO 1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine a continuous time LTI system characterized by impulse response $h(t) = e^{-4 t }$ is i) stable ii) causal	CO 2	PO 2	06
	c)	Draw direct form-I and direct form-II implementations for the system, $\frac{d^3 y(t)}{dt^3} + 2 \frac{dy(t)}{dt} + 3y(t) = x(t) + 3 \frac{dx(t)}{dt}$	CO 1	PO 1	06
		OR			
4	a)	Evaluate the convolution integral $y(t) = x(t) * h(t)$ where $x(t) = e^{-at} u(t)$ and $h(t) = u(t)$ for $a > 0$.	CO 2	PO 2	08
	b)	Determine the step response of discrete time LTI system characterized by impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$	CO 2	PO 2	06
	c)	Find the natural response for the system described by the following difference equation $y(n) - \frac{9}{16}y(n-2) = x(n-1)$ with $y(-1) = 1$ and $y(-2) = -1$	CO 2	PO 2	06
		UNIT - IV			
5	a)	State and prove sampling theorem for continuous time, band limited signal with relevant sketches.	CO 1	PO 1	08
	b)	Obtain the frequency response of discrete LTI system represented by the impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$	CO 2	PO 2	06
	c)	State and prove convolution property of DTFT.	CO 1	PO 1	06
		UNIT - V			
6	a)	A LTI discrete time system is given by the system function $H(z) = \frac{3-4z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$ Specify the ROC of $H(z)$ and find $h(n)$ (i) for stable system. (ii) for causal system	CO 2	PO 2	10
	b)	A causal system has input $x(n)$ and output $y(n)$. Find the impulse response of the system if $\delta(n) + \frac{1}{4}\delta(n-1) - \frac{1}{8}\delta(n-2)$ and $y(n) = \delta(n) - \frac{3}{4}\delta(n-1)$	CO 2	PO 2	10
		OR			
7	a)	Solve the following difference equation using unilateral Z-transform $y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = x(n)$ for $n \geq 0$ With initial conditions $y(-1) = 4$, $y(-2) = 10$ and $x(n) = (1/4)^n x(n)$	CO 2	PO 2	10
	b)	For the system having transfer function, $H(z) = \frac{1-4z^{-1}+4z^{-2}}{1-0.5z^{-1}+0.25z^{-2}}$ find the transfer function of the inverse system and check whether it is stable and causal.	CO 2	PO 2	06
	c)	Discuss the properties of ROC.	-	-	04
