

B.M.S. College of Engineering, Bengaluru-560019

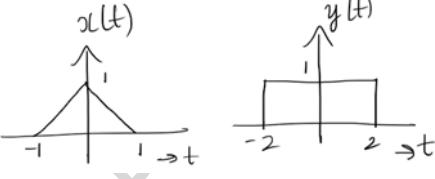
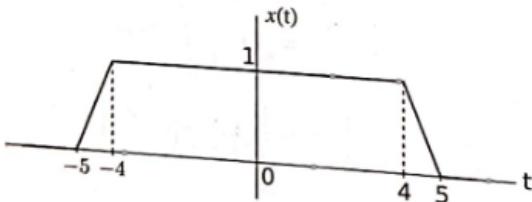
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

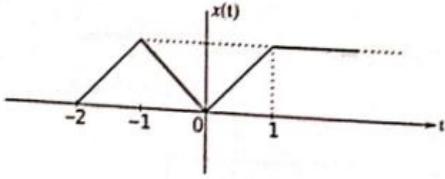
Programme: B.E.

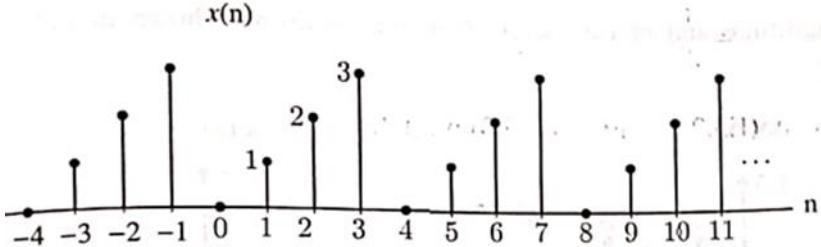
Semester: III

Branch: Electronics and Communication Engineering



Duration: 3 hrs.

Course Code: 23EC3PCSAS / 22EC3PCSAS


Max Marks: 100


Course: Signals and Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Identify whether the system is periodic or non-periodic, if periodic find the fundamental period</p> <p>i) $x[n] = \cos\left(\frac{\pi}{5}n\right) \sin\left(\frac{\pi}{3}n\right)$</p> <p>ii) $x(t) = a \cos \sqrt{2}t + b \sin(t/4)$</p>	CO1	PO1	5
	b)	<p>Given the signal $x(t)$ & $y(t)$, Plot</p> <p>a. $x(t) + y(t)$ b. $x(t) \cdot y(t)$ c. $y(t) - x(t)$ d. $y(t/2)$ e. $x(2t-3)$</p>	CO1	PO1	10
	c)	<p>A trapezoidal pulse $x(t)$ as shown in fig is applied to a differentiator defined by $y(t) = \frac{dx(t)}{dt}$</p> <p>1. Find the resulting output $y(t)$ of the differentiator 2. Find the energy of $y(t)$</p>	CO1	PO1	5
		OR			
2	a)	<p>Sketch the given signal</p> <p>1. $-u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)$</p> <p>2. $r(t+1) - r(t) + r(t-1)$</p>	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine and sketch the even and odd parts of the signals depicted in figure.	CO 1	PO 1	6
	c)		CO 1	PO 1	8
UNIT - II					
3	a)	Determine whether the following systems are Memory less, Causal, Time invariant, Linear and Stable. i) $y(t) = x(t/2)$ ii) $y(n) = n x(n)$	CO2	PO2	10
	b)	Mention the conditions on impulse response $h(n)$ of a system to be i) memory less ii) causal iii) stable Determine whether the system given below is memoryless, causal and stable 1. $h[n] = 2u[n] - 2u[n-1]$ 2. $h(t) = e^{-4 t }$	CO2	PO2	10
OR					
4	a)	Define systems and classify systems into different types with example.	CO1	PO1	10
	b)	Determine whether the system is linear, time invariant, memory, causal and stable for the following signals. i) $x(t) = e^{x(t)}$ ii) $x(n) = x(-n + 2)$	CO2	PO2	10
UNIT - III					
5	a)	Determine the convolution of the signals given below $x(t) = u(t) - u(t-2)$ $h(t) = t(u(t) - u(t-1))$	CO2	PO2	10
	b)	Evaluate the total response of the LTI system described by the differential equation $y''(t) + 5y'(t) + 6y(t) = 2e^{-t}u(t)$, $y(0) = 0$ and $y'(0) = 1$	CO2	PO2	10
OR					
6	a)	Represent following equations in Direct form-I and Direct form-II block diagram representation. $20 \frac{d^2y(t)}{dt^2} + 1 \frac{dy(t)}{dt} + 23y(t) = x(t) + 0.7 \frac{dx(t)}{dt}$	CO2	PO2	06

	b)	For the given LTI system, Evaluate the convolution sum using graphical method. $x[n]=\{-1,1,0,1,-1\}$; $h[n]=\{1,2,3\}$. Assume that the origin of the input signal and the impulse response is at 0 and 2 respectively.	CO2	PO2	10
	c)	State and prove the commutative property of the convolution sum.	CO1	PO1	04
	UNIT - IV				
7	a)	Find the DTFS co-efficients of the given waveform shown below. Sketch the magnitude and phase plot.	CO2	PO2	10
	b)	State and prove any four properties of DTFT.	CO1	PO1	10
	OR				
8	a)	State and prove any four properties of DTFS.	CO1	PO1	10
	b)	Evaluate the DTFS representation for the signal $x(n)$ and sketch the Magnitude and Phase spectra of the same. $x(n) = \sin\left(\frac{4\pi}{21}n\right) + \cos\left(\frac{10\pi}{21}n\right) + 1$	CO2	PO2	10
	UNIT - V				
9	a)	For the given signal, determine the Z-transform, ROC and pole zero plot. a) $x(n) = 7\left(\frac{1}{3}\right)^n u(n) - 6\left(\frac{1}{2}\right)^n u(n)$ b) $x(n) = (-a^n)u(-n-1)$ c) $x(n) = (a^n)u(n)$	CO2	PO2	8
	b)	Find the transform function for the LTI system described by the difference equation $y[n]-5/6 y[n-1]+1/6 y[n-2]=x[n]$ if input $x[n]=2^n u[n]$.	CO2	PO2	8
	c)	List the properties of ROC of Z- transform.	CO1	PO1	4
	OR				
10	a)	A causal LTI system is described by the difference equation $y[n]=y[n-1]+y[n-2]+x[n-1]$ a. Find the system function $H[z]$.	CO2	PO2	10

		<p>b. Plot the poles and zeros c. Indicate the ROC. d. Find the unit impulse response of this system e. Find a stable (Non causal) unit impulse response that satisfies the difference equation</p>			
	b)	Find the natural response of the LTI system described by the difference equation $y[n] - (1/4)y[n-1] - (1/8)y[n-2] = x[n] + x[n-1]$ with $y[-1]=0$ and $y[-2]=1$, using Z-Transform.	CO2	PO2	10

REAPPEAR EXAMS 2024-25