

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

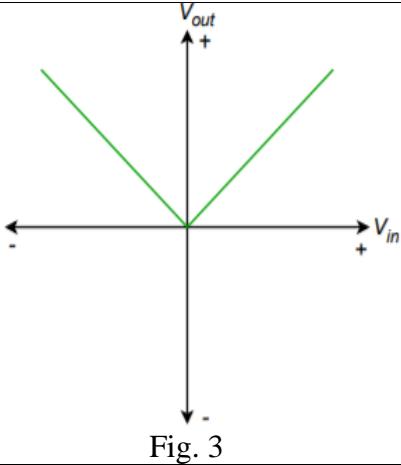
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC4PCAIC

Course: Analog Integrated Circuits

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks	
1	a)	Define Slew rate and obtain the relationship between Slew rate and maximum input frequency for a given op-amp excited with sine input signal. Write the typical value of slew rate in a 741 op-amp.	CO1	-	06	
	b)	A weighted summer circuit using an ideal op-amp has three inputs using $10\text{ k}\Omega$ resistors and a feedback resistor of $50\text{ k}\Omega$. A signal V_1 is connected to two of the inputs while signal V_2 is connected to the third. Express V_o in terms of V_1 and V_2 . If $V_1 = 1\text{V}$ and $V_2 = -1\text{V}$, what is V_o ?		CO 2	PO 1	04
	c)	Analyze the overall transfer function of an amplifier using Pole-Zero compensation technique.	CO 3	PO 2	10	
OR						
2	a)	Explain the working of a peak detector with the corresponding circuit diagram and waveforms	CO 1	-	05	
	b)	Find V_o for the adder-subtractor shown in figure 2.		CO 2	PO 1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Explain a suitable circuit with relevant equations to realize the transfer characteristic shown in figure 3.	 Fig. 3	CO 3	PO 2	07
UNIT – II						
3	a)	Explain the working of non-inverting comparator for $V_{ref} > 0$ and $V_{ref} < 0$ using OP-AMP with neat circuit diagram and waveforms.	CO 1			06
	b)	Sketch a regenerative comparator which produces a square wave. Given $R_1=56K\Omega$, $R_2=150\Omega$, $V_{i(p-p)}=1V_{(p-p)}$ Sine wave of frequency 50Hz, $V_{ref} = 0V$ and OP-AMP 741 is used with supply voltage are $\pm 15V$ and saturation voltages are $\pm 13.5V$. Determine the threshold voltage V_{UT} and V_{LT} . Draw the input, output waveform. Also plot the hysteresis voltage curve.	CO 2	PO 1		07
	c)	Suggest the oscillator whose amplifier gain should be atleast 3. Justify your answer with necessary derivations and circuit diagram.	CO 3	PO 2		07
UNIT - III						
4	a)	Analyze the working of a low voltage regulator circuit utilizing the IC-723. Also design the circuit for the output voltage of 3V. Assume $V_{ref} = 7V$ and $R_1=10K\Omega$.	CO 3	PO 2		10
	b)	Illustrate with a circuit diagram and frequency response, the working of first order low pass filter with variable gain. Derive its transfer function in frequency domain.	CO 3	PO 2		10
UNIT – IV						
5	a)	Sketch and explain the working of binary weighted resistor DAC and also give expression for its output voltage. What output voltage would be produced by a 4-bit DAC whose output range is 0 to 10 V and input binary number is 0110.	CO 2	PO 1		10
	b)	Analyze the working of 3-bit parallel comparator (Flash) ADC with circuit diagram and truth table.	CO 3	PO 2		10
OR						
6	a)	By applying successive approximation technique, explain how op-amp can be used to convert 212 V to its digital equivalent.	CO 2	PO 1		10

	b)	Illustrate the working of dual slope type ADC with a functional diagram and integrated output waveform. Derive for analog input voltage V_a .	CO 3	PO 2	10
		UNIT – V			
7	a)	Explain the working principle of PLL with neat block diagram including capture range and lock range.	CO 1	-	07
	b)	Using a 555 timer it is required to obtain a frequency of 1KHz and duty cycle 60% without using any external signal source. Name and design such a circuit. Assume $C=0.1\mu F$.	CO 4	PO 3	08
	c)	Design a monostable multivibrator using 555 timer to obtain a pulse width of 10 milli sec. Assume $C=1\mu F$.	CO 4	PO3	05
