

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC4PCAIC

Course: Analog Integrated Circuits

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	List the ideal characteristics of an operational amplifier and mention its practical values of each.	<i>CO 1</i>	-	06
	b)	Sketch the circuit of a non-saturating Half wave precision rectifier. Draw the input and output waveforms and explain the circuit operation.	<i>CO 1</i>	<i>PO2</i>	08
	c)	Design an inverting amplifier using op-amp 741 with voltage gain 100 and voltage required is 5V.	<i>CO 4</i>	<i>PO3</i>	06
OR					
2	a)	Define the following parameters of op-amps specifying their ideal and typical practical values (i) PSRR (ii) CMRR (iii) Slew Rate	<i>CO 1</i>	-	06
	b)	Derive an expression for the gain of an instrumentation Amplifier.	<i>CO2</i>	<i>PO1</i>	08
	c)	Draw an op-amp Sample and hold circuit. Sketch the signal, control and output voltage waveforms and explain the operation of the circuit.	<i>CO 1</i>	-	06
UNIT – II					
3	a)	Draw the circuit diagram of inverting Schmitt trigger with different UTP and LTP adjustments. Sketch I/O transfer curve, waveform and operation.	<i>CO 1</i>	<i>PO2</i>	10
	b)	Using 741 op-amp with supply of $\pm 12v$, design a RC phase shift oscillator to have an output frequency of oscillation 5KHz. Choose $I_L=50\mu A$.	<i>CO 2</i>	<i>PO2</i>	10
OR					
4	a)	Show that the gain of the Wien bridge oscillator is equal to 3 with necessary diagram and equations	<i>CO 1</i>	<i>PO2</i>	10
	b)	Identify the circuit with a pulse width of $T=0.693RC$ and derive the same. Also illustrate it's working with neat circuit diagram and waveforms.	<i>CO 2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	List the performance parameters of power supply and explain.	<i>CO 1</i>		06
	b)	With necessary functional block diagram of 3-terminal IC voltage regulator explain its operation.	<i>CO 3</i>	<i>PO2</i>	08
	c)	Draw the circuit of the low pass filter with variable gain and derive its transfer function.	<i>CO 3</i>	<i>PO2</i>	06
OR					
6	a)	From fundamentals derive an expression for cut off frequency of a 2 nd order butterworth low pass filter with Sallen-key filter type with unity gain	<i>CO 3</i>	<i>PO2</i>	10
	b)	Analyze the working of a low voltage regulator circuit utilizing the IC-723. Also Design the circuit for the output voltage of 5V. Assume $V_{ref} = 7V$.	<i>CO 3</i>	<i>PO2</i>	10
UNIT - IV					
7	a)	Write and explain with neat diagram of Digital to Analog converter with R-2R resistors.	<i>CO 3</i>	<i>PO1</i>	10
	b)	A 4-bit Binary (Binary -weighted) digit convertor the binary inputs b_0 to b_3 with +5V and $R=10K\Omega$ and feedback resistance of $R_F=1K\Omega$, Find output voltage and circuit diagram for the following cases i) when switch b_0 is closed ii) when switch b_1 is closed iii) when switch b_0 and b_1 is closed	<i>CO 3</i>	<i>PO3</i>	10
OR					
8	a)	List the specifications of ADC and explain any three in detail.	<i>CO1</i>	-	06
	b)	Describe the operation of counter type ADC.	<i>CO 3</i>	<i>PO2</i>	06
	c)	How many clock pulses are required for 8-bit Successive-approximation A/D converter, explain its operation with neat diagram.	<i>CO 3</i>	<i>PO2</i>	08
UNIT - V					
9	a)	Explain the functional block diagram of IC555	<i>CO 1</i>	-	08
	b)	Design a monostable 555 timer circuit to produce an output pulse of 10sec wide. Draw the circuit diagram.	<i>CO 4</i>	<i>PO3</i>	04
	c)	Draw the block diagram of PLL and explain its operation, list the application of PLL	<i>CO 1</i>	<i>PO2</i>	08
OR					
10	a)	Design a 555 Astable Multivibrator to operate at 5KHz with a duty cycle of 40%. Assume $C=0.01\mu F$.	<i>CO 4</i>	<i>PO3</i>	10
	b)	Derive an expression for pulse width of a Monostable multivibrator and draw the corresponding functional block diagram using 555 timer IC.	<i>CO 1</i>	<i>PO2</i>	10