

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations**Programme: B.E.****Branch: Electronics and Communication Engineering****Course Code: 23EC4PCAIC****Course: Analog Integrated Circuits****Semester: IV****Duration: 3 hrs.****Max Marks: 100**

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

		UNIT – I	CO	PO	Marks
1	a)	Discussing the concept of virtual short, derive an expression for the gain of a non-inverting amplifier.	<i>CO1</i>	-	6
	b)	Derive an expression for the gain of an instrumentation Amplifier.	<i>CO2</i>	<i>PO1</i>	8
	c)	Explain the working of a Sample and Hold circuit with relevant waveforms.	<i>CO2</i>	<i>PO1</i>	6
		OR			
2	a)	Define the following parameters of OP-Amps, also specifying their ideal and typical practical values (i) PSRR (ii) CMRR (iii) Slew Rate	<i>CO1</i>	-	6
	b)	Explain the working of a full-wave precision rectifier circuit.	<i>CO2</i>	<i>PO1</i>	8
	c)	Design a voltage to current converter to drive a floating load of $R_L = 200 \Omega$ with a constant current of 10 mA.	<i>CO4</i>	<i>PO3</i>	6
		UNIT – II			
3	a)	Design a Schmitt trigger for UTP = + 5V and hysteresis = 0.40 V. Assume the OP-Amp to be powered by a $\pm 15V$ power supply.	<i>CO4</i>	<i>PO3</i>	8
	b)	Implement an Op-Amp based monostable multivibrator to obtain a pulse of width $T_p = 5.0$ ms.	<i>CO2</i>	<i>PO1</i>	6
	c)	Design a Wien bridge oscillator for a frequency of 2.0 kHz, and an approximate peak-to-peak output voltage of 26V.	<i>CO4</i>	<i>PO3</i>	6
		UNIT - III			
4	a)	Design a voltage regulator using LM723 to obtain $V_o = 20V$ and a load current of $I_{o_max} = 1000$ mA.	<i>CO4</i>	<i>PO3</i>	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Discuss to contrast the working principles and features of linear power supplies with switch-mode power supplies.	CO1	-	6
	c)	Design a II – order Butterworth low-pass filter for a cut-off frequency of 1.0 kHz, and obtain its frequency response. Assume the damping coefficient $\alpha = 1.414$.	CO4	PO3	8
	UNIT – IV				
5	a)	Consider a 4-bit example and using suitable circuit analysis for a minimum of 2 nodes in the ladder, discuss how digital to analog voltage conversion is achieved using an R-2R ladder DAC.	CO2	PO1	12
	b)	Discuss the working principle of a counter-type of ADC with suitable timing diagrams to show that the digital count is proportional to the analog input voltage.	CO2	PO1	8
	OR				
6	a)	Analyze the working of 3-bit parallel comparator (Flash) ADC with circuit diagram and truth table.	CO 3	PO 2	10
	b)	Discuss the working principle of a 4-bit successive approximation ADC, assuming $V_{REF} = 10.0V$ when $V_{in} = 6.50V$.	CO 3	PO 2	10
	UNIT – V				
7	a)	With the help of a functional block diagram, explain the pin-functions of the 555 timer.	CO3	PO2	8
	b)	Design an astable multivibrator using 555 timer to obtain a rectangular waveform at $f_o = 2$ kHz, and duty cycle = 70 %. Assume $C=0.1\mu F$.	CO4	PO3	6
	c)	Explain the principle of operation of a Phase-locked loop with a block diagram.	CO3	PO2	6
