

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

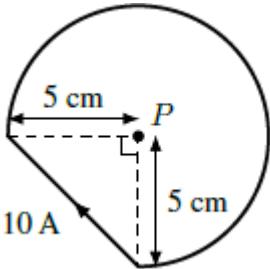
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC4PCFAW

Course: Fields and Waves

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Two point charges $Q_A = -20 \mu\text{C}$ and $Q_B = 50 \mu\text{C}$ are located at A(-6,4,7) and B(5,8,-2) respectively in free space. (Distances given in meter). Determine the vector force exerted on Q_A by Q_B given $\epsilon_0 = 10^{-9}/36\pi \text{ F/m}$.	<i>CO1</i>	<i>PO1</i>	7
	b)	Obtain an expression for the Electric field intensity (\vec{E}) due to an infinite sheet charge of uniform density ρ_S .	<i>CO1</i>	<i>PO1</i>	8
	c)	Given a $60 \mu\text{C}$ point charge located at the origin, find the total electric flux passing through i) The closed surface defined by $\rho = 26 \text{ cm}$ and $z = \pm 26 \text{ cm}$. ii) The plane $z = 26 \text{ cm}$.	<i>CO2</i>	<i>PO2</i>	5
OR					
2	a)	Given the Electric flux density $\vec{D} = z\rho\cos^2\phi \hat{a}_z \text{ C/m}^2$, find the total charge enclosed by the cylinder of radius 1 m with $-2 \leq z \leq 2 \text{ m}$.	<i>CO1</i>	<i>PO1</i>	5
	b)	Obtain an expression for the Electric field intensity (\vec{E}) due to an infinite line charge of uniform density ρ_L using Gauss's law.	<i>CO1</i>	<i>PO1</i>	7
	c)	What are equipotential surfaces? A 15 nC point charge is located at the origin in free space. Calculate V_1 at point $P_1(-2, 3, -1)$ in each of the following cases: i) $V = 0$ at (6, 5, 4) ii) $V = 0$ at infinity iii) $V = 5 \text{ V}$ at (2, 0, 4)	<i>CO2</i>	<i>PO2</i>	8
UNIT - II					
3	a)	Derive an expression for magnetic field at a point due to infinite long straight conductor using Ampere's circuital law.	<i>CO1</i>	<i>PO1</i>	6
	b)	Find the energy stored in free space for the region $2\text{mm} \leq r \leq 3\text{mm}$, $0^\circ \leq \theta \leq 90^\circ$ and $0^\circ \leq \phi \leq 90^\circ$ given the potential field $V = \frac{200}{r} \text{ V}$.	<i>CO2</i>	<i>PO2</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Using Laplace's equation, derive an expression for the potential in the space between the two plates of a parallel-plate capacitor. Also find the capacitance of the system.	CO1	PO1	7
		OR			
4	a)	Analyse and evaluate the magnetic field intensity at point P in the figure below.	CO2	PO2	6
	b)	Analyse the interface between a conductor and a dielectric and obtain the boundary conditions for electric field.	CO2	PO2	7
	c)	Given the potential field $V = \frac{50 \sin \theta}{r^2}$ V in free space. (i) Determine whether V satisfies the Laplace's equation. (ii) Find the total charge stored inside the spherical shell $1 < r < 2$ m.	CO1	PO1	7
		UNIT - III			
5	a)	A point charge $Q = 18$ nC has a velocity of 5×10^6 m/s in the direction of $\hat{a}_v = 0.6 \hat{a}_x + 0.75 \hat{a}_y + 0.3 \hat{a}_z$. Calculate the magnitude of the force exerted on the charge by the following fields: (i) $\vec{B} = -3 \hat{a}_x + 4 \hat{a}_y + 6 \hat{a}_z$ mT only (ii) $\vec{E} = -3 \hat{a}_x + 4 \hat{a}_y + 6 \hat{a}_z$ kV/m only (iii) \vec{E} and \vec{B} defined above acting together	CO2	PO2	8
	b)	Analyse the interface between two media of different permeability and obtain the boundary conditions for magnetic field.	CO2	PO2	8
	c)	Briefly explain the concept of displacement current density and state the corresponding Maxwell's equation.	-	-	4
		UNIT - IV			
6	a)	What is loss tangent in the context of electromagnetic wave propagation? How can it be used to identify good dielectrics?	CO1	PO1	7
	b)	Analyse a plane wave travelling in sea water with parameters $\epsilon_r = 81$, $\mu_r = 1$ and $\sigma = 4$ S/m, having the electric field given by $\vec{E}(z, t) = 0.2 e^{-z/\delta} \cos\left(4\pi \times 10^5 t - \frac{z}{\delta} + 75^\circ\right) \hat{a}_x$ V/m. Hence determine the skin depth, intrinsic impedance and Poynting vector.	CO2	PO2	7
	c)	What is polarization of wave? Discuss the different types of polarization.	-	-	6
