

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC4PCFAW / 22EC4PCFAW

Course: Fields and Waves

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Deduce an expression for energy density in electrostatic fields.	CO1	PO1	8
		b)	Compute the total charge within following volume $0.1 \leq x , y , z \leq 0.2$ and $\rho_v = 1/(x^3 y^3 z^3)$.	CO1	PO1	5
		c)	Deduce the electric field intensity due to an infinite line charge using Gauss Law. Clearly mention the assumptions made.	CO1	PO1	7
		OR				
	2	a)	Calculate the electric field intensity at P(1,1,1) caused due to four identical charges 3nC each located at $P_1 (1,1,0)$, $P_2 (-1,1,0)$, $P_3 (-1,-1,0)$ and $P_4 (1,-1,0)$.	CO1	PO1	7
		b)	Verify the divergence theorem for the region bounded by the surfaces $\rho = 2$, $\phi = 0$ & π , $z = 0$ & 5 and having flux density $\vec{D} = 6\rho \sin\left(\frac{\phi}{2}\right) \hat{a}_\rho + 1.5\rho \cos\left(\frac{\phi}{2}\right) \hat{a}_\phi$ C/m ² .	CO1	PO1	8
		c)	Analyze and obtain the electric field intensity due to an infinite sheet charge using Gauss' law.	CO1	PO1	5
			UNIT - II			
	3	a)	Obtain the equation for the continuity of current.	CO1	PO1	5
		b)	Analyze and obtain the boundary conditions for electric field between conductor and free space.	CO2	PO2	10
		c)	Find the magnetic field intensity at (1.5, 2, 3) due to a current conductor carrying current of 24 A along z-axis extending from 0 to 6.	CO1	PO1	5
		OR				
	4	a)	Conducting spherical shells with radii $a = 10\text{cm}$ and $b = 30\text{cm}$ are maintained at a potential difference of 100V such that $V = 0$ at $r = b$ and $V = 100\text{V}$ at $r = a$. Analyze V and E in the region between the shells. If $\epsilon_r = 2.5$ in the region, determine the total charge induced on the shells and the capacitance there on.	CO2	PO2	10

	b)	<p>Current density in cylindrical coordinates is given as</p> $\vec{J} = \begin{cases} -10^6 z^{1.5} \hat{a}_z \frac{A}{m^2} & \text{in the region } 0 \leq \rho \geq 20 \text{ } \mu\text{m} \\ 0 & \text{for } \rho > 20 \text{ } \mu\text{m} \end{cases}$ <p>i. Find the total current crossing the surface $z = 0.1 \text{ m}$ \hat{a}_z direction</p> <p>(ii) If the charge velocity is $2 \times 10^6 \text{ m/s}$ at $z = 0.1 \text{ m}$, find volume charge density ρ_v there.</p> <p>(iii) If $\rho_v = -2000 \text{ C/m}^3$ at $z = 0.15 \text{ m}$, find charge velocity there.</p>	CO1	PO1	10
		UNIT - III			
5	a)	Explain Maxwell's equations in point and integral forms for time-varying fields.	-	-	10
	b)	Deduce an expression for the force on a differential current element in a steady magnetic field.	CO 1	PO 1	10
		OR			
6	a)	Analyse the interface between two media of different permeability and obtain the boundary conditions for magnetic field.	CO2	PO2	10
	b)	A conductor of length 2.5m in $z = 0$ and $x = 4\text{m}$ carries a current of 12 A in $-\hat{a}_y$ direction. Calculate the uniform flux density in the region, if the force on the conductor is $12 \times 10^{-2} \text{ N}$ in the direction specified by $\frac{-\hat{a}_x + \hat{a}_z}{\sqrt{2}}$	CO1	PO1	10
		UNIT - IV			
7	a)	Deduce the equations for attenuation constant, phase constant and the intrinsic impedance for a uniform plane wave in a perfect dielectric.	CO1	PO1	10
	b)	Deduce an expression for Poynting theorem and explain each term.	CO1	PO1	10
		OR			
8	a)	Deduce the equations for attenuation constant, phase constant and the intrinsic impedance of electromagnetic wave in a good conductor.	CO1	PO1	10
	b)	Derive the general wave equation using Maxwell's equations.	CO1	PO1	10
		UNIT - V			
9	a)	Consider $\eta_1 = 100\Omega$ and $\eta_2 = 300\Omega$. Compute the reflection coefficient for this system. If the magnitude of the incident electric field intensity is 100 V/m, what is the value of the magnitude of the electric field intensity?	CO 2	PO 2	6
	b)	Assume a 50-MHz uniform plane wave having electric field 10V/m. The medium is lossless with $\epsilon_r=1$ and $\mu_r=1$. The wave propagates in the xy plane at a 30° angle to the x axis and is linearly polarized along z . Deduce the phasor expression for the electric field.	CO 2	PO 2	6

		c)	<p>Consider a homogeneous medium in which the refractive index varies linearly with frequency over a certain range:</p> $n(\omega) = \frac{n_0 \omega}{\omega_0}$ <p>Determine the group velocity and phase velocity of a wave at a frequency of ω_0.</p>	CO 2	PO2	8
			OR			
10	a)		With necessary equations explain Standing Wave Ratio (SWR)	-	-	10
	b)		<p>Derive the expressions for</p> <p>i) Reflection coefficient ii) Transmission coefficient And bring the relationship between them.</p>	CO1	PO1	10

B.M.S.C.E. - ODD SEM 2024-25