

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC4PCFAW

Course: Fields and Waves

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Two small identical conducting spheres have charges of 2 nC and -1nC respectively separated by 4 cm. i) Find the magnitude of force between them. ii) If they brought into contact and separated by 4 cm what will be the force between the two spheres?	CO1	PO1	6
	b)	Show that $\nabla \cdot \vec{D} = \rho_V$ by applying Gauss's law to a differential volume element.	CO1	PO1	7
	c)	If $V = x - y + xy + 2z$ V, find \vec{E} at (1, 2, 3) and the energy stored in a cube of side 2 m centered at the origin.	CO1	PO1	7
OR					
2	a)	Define electric field intensity and derive an expression for the same at a general point due to point charge in vector form.	CO1	PO1	6
	b)	Given the field $\vec{D} = \frac{5 \sin \theta \cos \phi}{r} \hat{a}_r$ C/m ² , find i) Volume charge density. ii) The total electric flux leaving the surface of the spherical volume of radius 2 m with centre at the origin.	CO1	PO1	7
	c)	What is the potential at the centre of a square with a side 2 m with charges 2 μ C, -4 μ C, 6 μ C and 2 μ C are located at its four corners.	CO1	PO1	7
UNIT - II					
3	a)	Derive the equation for the continuity of current in point and integral form.	CO1	PO1	6
	b)	Current density in cylindrical coordinates is given as $\vec{J} = \begin{cases} -10^6 z^{1.5} \hat{a}_z & \text{A/m}^2 \quad \text{in the region } 0 \leq \rho \leq 20 \text{ } \mu\text{m} \\ 0 & \text{for } \rho > 20 \text{ } \mu\text{m} \end{cases}$ (i) Find the total current crossing the surface $z = 0.1$ m \hat{a}_z direction (ii) If the charge velocity is 2×10^6 m/s at $z = 0.1$ m, find volume charge density ρ_V there.	CO1	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		(iii) If $\rho_v = -2000 \text{ C/m}^3$ at $z = 0.15 \text{ m}$, find charge velocity there.			
	c)	Conducting spherical shells with radii $a = 10\text{cm}$ and $b = 30\text{cm}$ are maintained at a potential difference of 100V such that $V = 0$ at $r = b$ and $V = 100 \text{ V}$ at $r = a$. Analyze and obtain V and \vec{E} in the region between the shells. If $\epsilon_r = 2.5$ in the region, determine the total charge induced on the shells and the capacitance there on.	CO2	PO2	7
		UNIT - III			
4	a)	Magnetic field intensity in free space is $\vec{H} = 10\rho^2 \hat{a}_\phi \text{ A/m}$. Determine the current density, \vec{J} . Hence determine the current through the unit circle in the plane $z = 0$.	CO1	PO1	6
	b)	Analyze the interface between two media of different permeability and obtain the boundary conditions for magnetic field.	CO2	PO2	7
	c)	A conductor of length 2.5m in $z = 0$ and $x = 4\text{m}$ carries a current of 12 A in $-\hat{a}_y$ direction. Calculate the uniform magnetic flux density in the region, if the force on the conductor is $12 \times 10^{-2} \text{ N}$ in the direction specified by $\frac{-\hat{a}_x + \hat{a}_z}{\sqrt{2}}$.	CO1	PO1	7
		UNIT - IV			
5	a)	Explain Faraday's law and obtain the corresponding Maxwell's equation.	-	-	6
	b)	Derive the general form of EM-wave equation for uniform plane wave and show that for free space, the velocity of the wave is $3 \times 10^8 \text{ m/s}$.	CO1	PO1	8
	c)	Analyze a plane wave travelling in sea water with parameters $\epsilon_r = 81$, $\mu_r = 1$ and $\sigma = 4 \text{ S/m}$, having the electric field given by $\vec{E}(z, t) = 0.2e^{-z/\delta} \cos\left(4\pi \times 10^5 t - \frac{z}{\delta} + 75^\circ\right) \hat{a}_x \text{ V/m.}$ Hence determine the skin depth, intrinsic impedance and Poynting vector.	CO2	PO2	6
		OR			
6	a)	Find the amplitude of displacement current density in each of the following cases: (i) In the air space at point within a large power distribution transformer where $\vec{B}(x, t) = 0.8 \cos[1.257 \times 10^{-6}(3 \times 10^8 t - x)] \hat{a}_y \text{ T.}$ (ii) In a metallic conductor at 60 Hz , if $\epsilon = \epsilon_0$, $\mu = \mu_0$, $\sigma = 5.8 \times 10^7 \text{ S/m}$ and $\vec{J} = \sin(377t - 117.1z) \hat{a}_x \text{ MA/m}^2$.	CO1	PO1	8

	b)	Analyze the sliding bar given in below figure the location of bar is given by $x = 5t + 2t^3$, the separation between the two rails ab is 20 cm and $\vec{B} = 0.8x^2 \hat{a}_z T$. Find the voltmeter reading at $t = 0.4s$.	CO2	PO2	6
	c)	List the point form of Maxwell's equations for steady and time varying fields.	-	-	6
UNIT - V					
7	a)	With necessary equations explain Standing Wave Ratio (SWR).	-	-	10
	b)	For an EM-wave traveling from one medium to another, derive the expressions for i) Reflection coefficient ii) Transmission coefficient and bring-out the relationship between them.	CO1	PO1	10
