

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC4PCFAW / 22EC4PCFAW

Max Marks: 100

Course: Fields and Waves

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Quantities indicated in bold represent vectors.

UNIT - I			CO	PO	Marks
1	a)	Obtain the relationship between electric flux density and electric field intensity.	1	1	05
	b)	State and illustrate Gauss' law.	-	-	05
	c)	Given the field $\mathbf{D} = 6\rho \sin(\phi/2) \mathbf{a}_\rho + 1.5\rho \cos(\phi/2) \mathbf{a}_\phi \text{ C/m}^2$, evaluate both sides of divergence theorem for the region bounded by $\rho=2$, $0 \leq \phi \leq \pi$, $0 \leq z \leq 5$.	1	1	10
OR					
2	a)	Derive an expression for electric field intensity at any point due to an infinite sheet of charge.	1	1	06
	b)	Two uniform line charges of density $4n\text{C/m}$ and $6n\text{C/m}$ lie in $x=0$ plane at $y = 5$ and -6 respectively, in free space. Find \mathbf{E} at $(4, 0, 3)$.	1	1	07
	c)	An electric field is expressed as $\mathbf{E} = 6x^2 \mathbf{a}_x + 6y \mathbf{a}_y + 4 \mathbf{a}_z \text{ V/m}$. Find: (i) V_{MN} , if points M and N are specified by M (2, 6, -1) and N (-3, -3, 2). (ii) V_M , if Q (4, -2, -35) is the zero-potential point.	1	1	07
UNIT - II					
3	a)	From the law of conservation of charge, it can be said that current is continuous from one side of a reference surface to the other. Considering a suitable reference surface, obtain the current continuity equation.	1	1	07
	b)	Evaluate the boundary conditions related to electric field at the interface of a conductor and free-space.	2	2	07
	c)	Derive the expression of capacitance of a coaxial capacitor having inner radius a , outer radius b and the length L .	1	1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	Given $\mathbf{J} = 10 \rho^2 z \mathbf{a}_\rho - 4\rho \cos^2\phi \mathbf{a}_\phi$ mA/m ² , find current density at P (3, 30°, 2) and also determine current flowing outward through $\rho=3$, $0 < \phi < 2\pi$, $2 < z < 2.8$.	1	1	07
	b)	Derive Poisson's equation from point form of Gauss law.	1	1	05
	c)	Given the potential field $V = [A \rho^4 + B \rho^4] \sin(4\phi)$ volts, show that $\nabla^2 V = 0$. Also, determine the values of A and B, so that $V = 100$ volts and $ \mathbf{E} = 500$ V/m at P ($\rho=1$, $\phi = 22.5^\circ$, $z=2$).	1	1	08
UNIT - III					
5	a)	State and explain Ampere's circuital law. Using the same, derive the expression for magnetic field intensity at any point due to an infinite length filamentary current carrying conductor present on z-axis.	1	1	07
	b)	Given the following values for P_1 , P_2 and $I_1 \Delta \mathbf{L}_1$, calculate $\Delta \mathbf{H}_2$, $P_1(1, 2, 3)$, $P_2(-3, -1, 2)$, $2\pi(-\mathbf{a}_x + \mathbf{a}_y + 2\mathbf{a}_z)$ μAm .	1	1	05
	c)	Evaluate the boundary conditions at the interface of two magnetic media.	1	1	08
OR					
6	a)	State and explain Biot-Savart's law.	1	1	04
	b)	A rectangular path is formed by $P_1(2, 3, 4)$ to $P_2(4, 3, 4)$ to $P_3(4, 3, 1)$ to $P_4(2, 3, 1)$ to P_1 . (i). Evaluate the closed line integral of \mathbf{H} about the path, given that $\mathbf{H} = 3z \mathbf{a}_x - 2x^3 \mathbf{a}_z$ A/m (ii). Analyze the quotient enclosed by the path as an approximation to $(\nabla \times \mathbf{H})_y$ (iii). Evaluate $(\nabla \times \mathbf{H})_y$ at the center of the area.	2	2	10
	c)	Two differential current elements, $I_1 \Delta \mathbf{L}_1 = 3 \times 10^{-6} \mathbf{a}_y$ Am at $P_1(1, 0, 0)$ and $I_2 \Delta \mathbf{L}_2 = 3 \times 10^{-6}(-0.5\mathbf{a}_x + 0.4\mathbf{a}_y + 0.3\mathbf{a}_z)$ Am at $P_2(2, 2, 2)$ are located in free-space. Find the vector force exerted on $I_1 \Delta \mathbf{L}_1$ by $I_2 \Delta \mathbf{L}_2$.	1	1	06
UNIT - IV					
7	a)	Starting from the equation of Faraday's law, obtain the point form of Maxwell's equation concerning spatial derivative of \mathbf{E} and time derivative of \mathbf{H} .	1	1	05
	b)	Within certain region, $\epsilon = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m, if $B_x = 2 \times 10^{-4} \cos(10^5 t) \sin(10^{-3} y)$ T, find \mathbf{E} and analyse the total magnetic flux passing through the surface $x=0$, $0 < y < 40$ m, $0 < z < 2$ m at $t = 1 \mu\text{s}$.	2	2	07
	c)	Consider the case of wave propagation in free-space in which, E-field is x-direction. Using the Maxwell's equation in phasor form, obtain Helmholtz wave equation and comment the solution for E-field.	2	2	08

			OR			
	8	a)	Evaluate the amplitude of displacement current density <ul style="list-style-type: none"> i. In the air space at point within a large power distribution transformer where $\vec{B} = 0.8 \cos[1.257 \times 10^{-6}(3 \times 10^8 t - x)] \hat{a}_y \text{ T}$ ii. In a metallic conductor at 60Hz, if $\epsilon = \epsilon_0$, $\mu = \mu_0$, $\sigma = 5.8 \times 10^7 \text{ S/m}$ and $\vec{J} = \sin(377t - 117.1z) \hat{a}_x \text{ MA/m}^2$. 	2	2	08
		b)	Starting from Maxwell's curl equation, obtain the equation of Poynting's theorem and analyze the same.	2	2	12
			UNIT - V			
	9	a)	Explain the reflection of uniform plane wave when it is incident normally on the boundary between two regions of different dielectric and hence obtain the expression of reflection coefficient.	1	1	10
		b)	Given $\eta_1 = 100 \Omega$ and $\eta_2 = 300 \Omega$ and $E_{x10}^+ = 100 \text{ V/m}$: <ul style="list-style-type: none"> (i). Evaluate the field values for incident, reflected and transmitted wave. (ii). Analyze average power density of incident, reflected and transmitted wave. 	2	2	10
			OR			
	10	a)	Starting from the total instantaneous field derive an expression for Standing Wave Ratio (SWR), which has both travelling wave and standing wave terms.	1	1	08
		b)	Consider a 50 MHz uniform plane wave having electric field amplitude of 10 V/m. The medium is lossless, having $\epsilon_r = \epsilon'_r = 9$ and $\mu_r = 1$. The wave propagates in x, y plane at a 30° angle to the x- axis and is linearly polarized along z. Obtain the phasor expression for the electric field.	1	1	06
		c)	Determine the reflection and transmission coefficients of an electric field wave travelling in air and is incident normally on a boundary between air and dielectric having permittivity $\epsilon_r = 4$ and permeability, $\mu_r = 1$.	2	2	06
