

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 19EC4PCHDL

Course: HDL Programming

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Explain the VLSI design flow with the help of a flow diagram.	-	-	6
	b)	Discuss the difference between monitor and display statements with example.	CO 1	PO 1	4
	c)	Design a 4-bit ripple-carry adder using Verilog top-down design methodology. Write the gate level implementation for the leaf cell.	CO 3	PO 3	10
		OR			
2	a)	Design a 4-bit ripple carry counter using Verilog top-down design methodology. Write the code for each of the leaf cells.	CO 3	PO 3	10
	b)	Discuss the different types of descriptions used in Verilog with example code.	CO 1	PO 1	10
			UNIT - II		
3	a)	If A and B are two unsigned variables with A = 11110000 and B = 01011101, find the value of i. $\sim(A \& B)$ ii. $A \&& B$ iii. $\sim B$ iv. $B << 1$	CO 1	PO 1	8
	b)	Design a logic system that has three 1-bit inputs, a_1, a_2 and a_3 ; and 1-bit output b . The LSB bit is a_1 ; and b is '1' only when $a_1a_2a_3=1,3,6$ and 7 (all in decimal), otherwise b is 0. Write the Verilog data flow description to implement the design.	CO 3	PO 3	8
	c)	Design a Verilog gate level model for the 4X1 Multiplexer using its gate structure.	CO 3	PO 3	4
		OR			
4	a)	Design a 2-to-1 multiplexer using bufif0 and bufif1 gates as shown below. The delay specification for gates b1 and b2 are as follows:	CO 3	PO 3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <thead> <tr> <th></th><th>Min</th><th>Typ</th><th>Max</th></tr> </thead> <tbody> <tr> <td>Rise</td><td>1</td><td>2</td><td>3</td></tr> <tr> <td>Fall</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>Turnoff</td><td>5</td><td>6</td><td>7</td></tr> </tbody> </table>		Min	Typ	Max	Rise	1	2	3	Fall	3	4	5	Turnoff	5	6	7		
	Min	Typ	Max																	
Rise	1	2	3																	
Fall	3	4	5																	
Turnoff	5	6	7																	
		Write the Verilog code and apply stimulus to test the output values.																		
	b)	If A, B and C are three unsigned variables with A = 1101 and B = 1010 and C = 0111. find the value of $y = ((A \wedge B) \&& (\sim C)) + ((A >> 3) (C << 2))$;	CO 1	PO 1																
	UNIT - III																			
5	a)	Design a N-bit magnitude comparator using full-adder, write a Verilog code for a N- bit magnitude comparator Using generate statement. Draw all the required logic diagrams.	CO 3	PO 3																
	b)	Explain the syntax of Verilog if-else statement and case statement with example.	-	-																
	c)	Differentiate task and functions.	CO 1	PO 1																
	OR																			
6	a)	Design an 8-bit counter by using a forever loop, named block, and disabling of named block. The counter starts counting at count = 4 and finishes at count = 68. The count is incremented at positive edge of clock. The clock has a time period of 10. The counter counts through the loop only once and then is disabled.	CO 3	PO 3																
	b)	Explain the structure of various loop statements in HDL with syntax and example code.	-	-																
	c)	Design a SR Flip-flop by using Verilog case statement.	CO 3	PO 3																
	UNIT - IV																			
7	a)	With flow diagram, explain the RTL to gate level logic synthesis flow.	-	-																
	b)	Analyse the function given below and write the complete code and synthesized logic diagram. <pre> function [3:0] fact; input [2:0] a; begin if (a<=4) fact = 2*a+5; end endfunction </pre>	CO 2	PO 2																
	OR																			

	8	a)	List the synthesizable Verilog constructs, and explain how logic synthesis tools interpret the following Verilog constructs: (a) Assign (b) if-else (c) case	-	-	10
		b)	Analyze the below given code snippet. Write the complete Verilog code and Synthesized logic circuit. always @(inp) begin if (inp[0] == 1'b1) outp = 3'd7; else if (inp[1] == 1'b1) outp = 3'd6; else if (inp[2] == 1'b1) outp = 3'd5; else outp = 3'd0; end	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - V						
	6	a)	Design a Mealy type FSM for Ex-3 to BCD code converter using Verilog with a relevant state diagram.	<i>CO 3</i>	<i>PO 3</i>	12
		b)	Explain the FPGA architecture with the help of a block diagram	-	-	8
OR						
	7	a)	Design a Mealy-type FSM for serial adder using Verilog behavioral description with the relevant state diagram.	<i>CO 3</i>	<i>PO3</i>	11
		b)	Explain the following with respect to FPGA design: i. Design Implementation ii. Static timing analysis iii. Back-Annotation	-	-	9
