

# B.M.S. College of Engineering, Bengaluru-560019

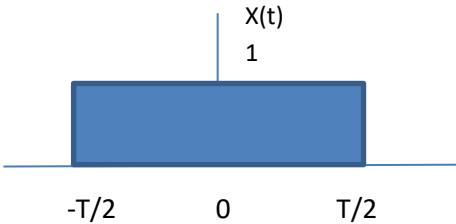
Autonomous Institute Affiliated to VTU

## December 2023 Supplementary Examinations

**Programme: B.E.**

**Semester: IV**

**Branch: Electronics and Communication Engineering**


**Duration: 3 hrs.**

**Course Code: 22EC4PCPCS**

**Max Marks: 100**

**Course: Principles of Communication Systems**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                                       |   |    | <b>UNIT - I</b>                                                                                                                                                                                        | <i>CO</i>  | <i>PO</i>  | <b>Marks</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1 | a) | Define Amplitude Modulation. Derive the expression on AM by both time and frequency domain representations with necessary waveforms                                                                    | <i>CO1</i> | <i>PO1</i> | <b>08</b>    |
|                                                                                                                                                                                                       |   | b) | Explain the detection of message signal from amplitude modulated signal using an envelope detector and bring out the significance of RC time constant.                                                 | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |
|                                                                                                                                                                                                       |   | c) | An AM amplifier has $P_{out}=50W$ RF output at $\mu=1$ . What is the power of unmodulated carrier? What power output is required to be delivered by the base band signal if $\% \mu$ is reduced to 75% | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |
|                                                                                                                                                                                                       |   |    | <b>UNIT - II</b>                                                                                                                                                                                       |            |            |              |
|                                                                                                                                                                                                       | 2 | a) | Explain the method of obtaining a practical synchronous receiving system with DSB-SC modulated waves using COSTAS loop                                                                                 | <i>CO2</i> | <i>PO2</i> | <b>08</b>    |
|                                                                                                                                                                                                       |   | b) | With neat block diagram, explain the operation of Quadrature Carrier Multiplexing                                                                                                                      | -          | -          | <b>07</b>    |
|                                                                                                                                                                                                       |   | c) | For the rectangular pulse shown in fig. 1, evaluate its Hilbert transform.                                                                                                                             | <i>CO1</i> | <i>PO1</i> | <b>05</b>    |
|                                                                                                                                                                                                       |   |    |                                                                                                                     |            |            |              |
| Fig. 1 Rectangular Pulse                                                                                                                                                                              |   |    |                                                                                                                                                                                                        |            |            |              |
| <b>OR</b>                                                                                                                                                                                             |   |    |                                                                                                                                                                                                        |            |            |              |

|                   |    |                                                                                                                                                                                                                                                                                                                              |     |     |           |
|-------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 3                 | a) | Explain the Frequency Domain representation, scheme for generation and demodulation of VSB modulated wave, with relevant spectrum of signals in the demodulation scheme and relevant mathematical expressions.                                                                                                               | CO2 | PO2 | <b>10</b> |
|                   | b) | Derive an expression for SSB modulated wave for which the lower sideband is retained.                                                                                                                                                                                                                                        | CO1 | PO1 | <b>10</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 4                 | a) | Derive an expression for single tone sinusoidal FM wave, find its spectrum.                                                                                                                                                                                                                                                  | CO1 | PO1 | <b>06</b> |
|                   | b) | Mention the properties of FM and Describe with necessary equations and block diagram, the generation of narrow band FM.                                                                                                                                                                                                      | CO1 | PO1 | <b>08</b> |
|                   | c) | Explain how downward Frequency Translation is achieved with the help of a block diagram.                                                                                                                                                                                                                                     | CO1 | PO1 | <b>06</b> |
| <b>OR</b>         |    |                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 5                 | a) | Illustrate the i) FM generation using Direct method<br>ii) Zero Crossing Detector                                                                                                                                                                                                                                            | CO2 | PO2 | <b>12</b> |
|                   | b) | A 93.2 MHz carrier is frequency modulated by a 5KHz sinewave. The resultant FM signal has a frequency deviation of 40KHz.<br>(a) Find the carrier swing of the FM signal.<br>(b) What are the highest and lowest frequencies attained by the frequency modulated signal.<br>(c) Calculate the modulation index for the wave. | CO1 | PO1 | <b>08</b> |
| <b>UNIT - IV</b>  |    |                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 6                 | a) | Derive an Expression for overall equivalent noise temperature of the cascade connection of any number noises for two port network.                                                                                                                                                                                           | CO1 | PO1 | <b>04</b> |
|                   | b) | What is noise equivalent bandwidth? Derive an expression for noise equivalent bandwidth                                                                                                                                                                                                                                      | CO1 | PO1 | <b>08</b> |
|                   | c) | Two resistors of 20K and 50 K are at room temperature 290 K. Calculate for the bandwidth of 100KHz, the thermal noise for the following conditions:<br>i) For each resistor ii) For two resistors in series<br>ii) For two resistors in Parallel                                                                             | CO1 | PO1 | <b>08</b> |
| <b>UNIT - V</b>   |    |                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 7                 | a) | Obtain the interpolation formula for reconstructing the original signal.                                                                                                                                                                                                                                                     | CO1 | PO1 | <b>12</b> |
|                   | b) | With a neat block diagram and waveform, explain TDM.                                                                                                                                                                                                                                                                         | CO1 | PO1 | <b>08</b> |

\*\*\*\*\*