

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC4PCPCS

Max Marks: 100

Course: Principles of Communication Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Consider the standard AM wave equation and derive the expression for Single tone Amplitude Modulation. Represent all the signals in time domain and frequency domain.	CO 1	PO1	10
		b)	An amplitude modulated wave has the form $S_{AM}(t) = [10 \cos(2\pi \times 10^6 t) + 5 \cos(2\pi \times 10^6 t) (\cos(2\pi \times 10^3 t) + 2 \cos(2\pi \times 10^6 t) \cos(4\pi \times 10^3 t)] V$ i. Find the total modulated power, the sideband power assuming unit ohm resistive load. ii. Obtain the total modulation index.	CO 1	PO1	04
		c)	Show that amplitude modulated wave can be obtained using square law device and a filter, with diagram and expressions.	CO 2	PO2	06
UNIT – II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	With a neat circuit diagram, discuss the generation of DSBSC signal using ring modulator. Also, represent its frequency spectrum with necessary equations.	CO 2	PO2	10
		b)	Derive an expression for SSB modulated wave for which Upper Side Band (USB) is retained in time domain.	CO 2	PO2	10
	OR					
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	With a neat block diagram, explain the coherent detection of DSBSC waves. Elaborate on the types of errors occur using this method of detection.	CO 2	PO2	10
		b)	With a neat block diagram, discuss the generation of SSB-SC using phase discrimination method with relevant expressions.	CO 2	PO2	10

UNIT - III					
4	a)	Consider a single tone frequency modulated wave expression and derive the expression for FM wave when $\beta \ll 1$. Illustrate the block diagram for expression obtained.	<i>CO 1</i>	<i>PO1</i>	10
	b)	With all necessary diagrams, derive the expression for instantaneous frequency in time domain using Direct FM method.	<i>CO 1</i>	<i>PO1</i>	10
OR					
5	a)	Give the time domain expressions for PM and FM wave. Illustrate with neat block diagram, how FM signal can be obtained from PM modulator.	<i>CO 2</i>	<i>PO2</i>	06
	b)	A FM wave is represented by the following equation: $s(t) = 10 \cos [5 \times 10^8 t + 4 \sin (1250 t)]$. Find i) Modulation index ii) Modulation frequency iii) Frequency deviation iv) Carrier Frequency v) Power of FM wave in an 5Ω resistor.	<i>CO 1</i>	<i>PO1</i>	04
	c)	Bandwidth of Wide Band FM wave is infinite. Justify it using appropriate expressions and spectrums.	<i>CO 2</i>	<i>PO2</i>	10
UNIT - IV					
6	a)	Define the terms: i. Noise figure ii. Fidelity iii. Image frequency rejection ratio	<i>CO 1</i>	<i>PO1</i>	06
	b)	Discuss the threshold effect in angle modulation	<i>CO 1</i>	<i>PO1</i>	04
	c)	With neat circuit diagrams, explain the Pre-emphasis and De-emphasis circuit	<i>CO 1</i>	<i>PO1</i>	10
UNIT - V					
7	a)	Discuss in detail the practical aspects of sampling and signal recovery elaborating on the types of sampling techniques used in practical sampling.	<i>CO 1</i>	<i>PO1</i>	10
	b)	Consider 'N' low frequency message signals. Using Pulse Amplitude Modulation (PAM) technique, device a scheme to transmit and receive the 'N' signal using single communication channel.	<i>CO 2</i>	<i>PO2</i>	10
