

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PE1AD / 22EC5PE1AD

Max Marks: 100

Course: Advanced Digital Logic Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss ASIC Design Flow in detail with neat flow diagram.	-	-	08
		b)	Design JK_FF using D_FF and Multiplexer. Write a test bench to test the same.	CO 3	PO3	12
	OR					
	2	a)	Write the Verilog RTL for a clock divided by 4 counter with 50% duty cycle and asynchronous active high reset condition. The design should have an output Y that goes high each time the count becomes 2. Also write a test bench for the same.	CO 3	PO3	12
		b)	Discuss “always” and “initial” constructs in verilog with a suitable example for each.	-	-	08
	UNIT - II					
	3	a)	Discuss non-synthesizable Verilog constructs and list any five.	-	-	08
		b)	Analyse the significance of Reset recovery time for asynchronous reset designs. Suggest a suitable method to ensure that the reset recovery time is met when using asynchronous reset.	CO2	PO2	12
	OR					
	4	a)	Discuss Verilog event Queue with neat flow diagram.	-	-	12
		b)	Analyse with examples the various delay models for Data flow modelling.	CO2	PO2	08
			UNIT - III			
5	a)	With the example of negative edge triggered D Flip Flop, analyse the setup and hold time delays.	CO2	PO2	10	
	b)	Analyze the RTL given below for set-up and hold violations.	CO2	PO2	10	

		<p>Clock period = 10 ns</p> <p>$T_{clk-q} = 2 \text{ ns}$</p> <p>$T_{prop(\max)} = 4 \text{ ns}$ $T_{prop(\min)} = 2 \text{ ns}$</p> <p>$T_{buf} = 1 \text{ ns}$</p> <p>$T_{setup} = 1 \text{ ns}$ $T_{hold} = 2 \text{ ns}$</p> <p>Clk</p>		
		OR		
6	a)	Analyse the approaches to fix the following violations: i) Setup violations ii) Hold violations	<i>CO2</i>	<i>PO2</i> 10
	b)	Analyse the RTL shown below for set-up and hold violations Given : $T_{clk-q} = 4\text{ns}/1\text{ns}$, $T_p = 7\text{ns}/5\text{ns}$, $T_{w1} = T_{w2} = 2\text{ns}/1\text{ns}$, $T_{su} = 5\text{ns}$, $T_h = 1\text{ns}$, $T_{clk} = 10\text{ns}$.	<i>CO2</i>	<i>PO2</i> 10
UNIT - IV				
7	a)	Applying the concept of logic Synthesis, discuss with neat diagrams the process of Translation, Mapping and optimization.	<i>CO1</i>	<i>CO 1</i> 12
	b)	Discuss the concept of DSCL and its content selection.	-	- 08
OR				
8	a)	Discuss the main optimization trade-offs.	-	- 10
	b)	In VLSI designs, apply the concept of constraints driving the optimization.	<i>CO1</i>	<i>CO 1</i> 10
UNIT - V				
9	a)	Draw the state diagram and develop the Verilog RTL for a Non-overlapping Moore FSM which produces output '1' when the input bit stream is 1001 with neat indentation, comments and header.	<i>CO 3</i>	<i>PO3</i> 12
	b)	Discuss and analyse data loss issue in CDC designs.	<i>CO2</i>	<i>PO2</i> 08
OR				
10	a)	Draw the state diagram and develop the Verilog RTL for a non-overlapping Mealy state machine which produces output as '1' if the input bit stream is 1011 with neat indentation, comments and header.	<i>CO 3</i>	<i>PO3</i> 12
	b)	Discuss and analyse Metastability with clock domain crossing.	<i>CO2</i>	<i>PO2</i> 08
