

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

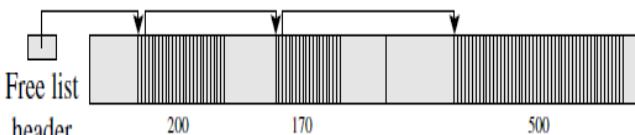
Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PE1OS / 22EC5PE1OS


Max Marks: 100

Course: Operating System

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Describe the classes of operating system.	CO 1	PO 1	10
	b)	In a timesharing system Processes P_1 and P_2 follow a cyclic behavior pattern. Each cycle contains a burst of CPU activity to service a subrequest and a burst of I/O activity to report its result, followed by a wait until the next subrequest is submitted to it. The CPU bursts of processes P_1 and P_2 are 15 and 30 ms, respectively, while the I/O bursts are 100 and 60 ms, respectively. Illustrate the operation by drawing a timing chart. Find the response time of the processes assuming the time slice to be 10ms.	CO 1	PO 1	10
OR					
2	a)	Differentiate the types of computing environment with example	CO 1	PO 1	10
	b)	Consider two programs p_1 and p_2 to be executed in a multiprogramming operating system. P_1 has 1ms CPU burst and 2ms I/O burst whereas p_2 has 5.5ms CPU burst and 2.5ms I/O burst. Assign priorities to the programs and draw the time chart.	CO 1	PO 1	10
UNIT - II					
3	a)	Write a program in C language to create 4 child process. Let the parent create 4 child processes. Make them execute ls, ls -l, pwd and date commands.	CO 2	PO 2	10
	b)	What are the fundamental process states? Explain the process state transitions with flow diagram.	CO 2	PO 2	10
OR					
4	a)	Create a child process that displays its process ID and parent process ID. let the child execute ls and ls -l command.	CO 2	PO 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A system administrator observes that two processes with the same priority are behaving differently during context switching. Explain how the Process Control Block (PCB) influences this behavior. Provide a detailed explanation of the PCB's role in context switching.	CO2	PO2	10												
		UNIT - III															
5	a)	Consider the following set of processes. Analyze and compute the average waiting time and turnaround time using the First-Come-First-Served (FCFS) scheduling algorithm.	CO 2	PO 2	10												
		<table border="1"> <thead> <tr> <th>Process</th> <th>Arrival Time</th> <th>Burst Time</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0 ms</td> <td>5 ms</td> </tr> <tr> <td>P2</td> <td>2 ms</td> <td>3 ms</td> </tr> <tr> <td>P3</td> <td>4 ms</td> <td>8 ms</td> </tr> </tbody> </table>	Process	Arrival Time	Burst Time	P1	0 ms	5 ms	P2	2 ms	3 ms	P3	4 ms	8 ms			
Process	Arrival Time	Burst Time															
P1	0 ms	5 ms															
P2	2 ms	3 ms															
P3	4 ms	8 ms															
	b)	Differentiate Race condition and critical section with example	CO 2	PO 2	10												
		OR															
6	a)	Analyze the performance of Round Robin (RR) scheduling with a time quantum of 2 ms for the following processes. Compute the average waiting time and turnaround time.	CO 2	PO 2	10												
		<table border="1"> <thead> <tr> <th>Process</th> <th>Arrival Time</th> <th>Burst Time</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0 ms</td> <td>5 ms</td> </tr> <tr> <td>P2</td> <td>1 ms</td> <td>4 ms</td> </tr> <tr> <td>P3</td> <td>2 ms</td> <td>2 ms</td> </tr> </tbody> </table>	Process	Arrival Time	Burst Time	P1	0 ms	5 ms	P2	1 ms	4 ms	P3	2 ms	2 ms			
Process	Arrival Time	Burst Time															
P1	0 ms	5 ms															
P2	1 ms	4 ms															
P3	2 ms	2 ms															
	b)	Differentiate preemptive and non preemptive scheduling with example for each.	CO 2	PO 2	10												
		UNIT - IV															
7	a)	Compare contiguous and non-contiguous memory allocation.	CO 2	PO 2	8												
	b)	Consider the free list given in Figure 1	CO 2	PO 2	12												
		Figure 1															
		Using the First, Best, and Next-Fit memory allocation techniques, show how memory allocation is done for the process requesting 100, 50, and 400 bytes. Justify your answer by an appropriate description.															
		OR															

	8	a)	Compare internal fragmentation and external fragmentation in details.	CO 2	PO 2	8
		b)	Four free memory area starting at addresses 100K,300K,450K, and 600K, where K=1024, with sizes of 50KB,30KB,80KB and 40KB respectively, are present in memory. Process P consists of P-1,P-2,P-3 with sizes of 50KB,30KB, and 60KB respectively which has a size requirement of 140KB. Show how these processes can be loaded into free memory areas and explain the process of address calculation and memory allocation in non-continuous memory..	CO 2	PO 2	12
			UNIT - V			
	9	a)	Explain the purpose of a file system in an operating system. How does it contribute to the management of data and storage devices?.	CO 2	PO 1	10
		b)	Explain the concept of buffering in IOCS and its advantages.	CO 2	PO 2	10
			OR			
	10	a)	Explain the role of metadata in file systems.	CO 2	PO 2	10
		b)	Describe the role of a directory structure in a file system. How does a directory differ from a file?	CO 2	PO 1	10
