

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 19EC5PE2IP

Course: Image Processing

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 19.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

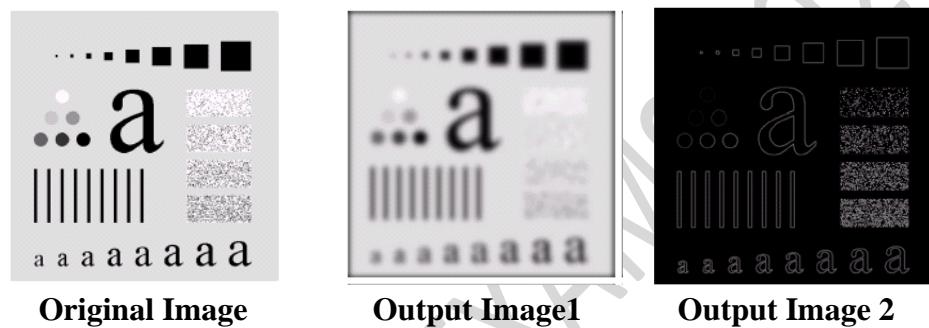
UNIT - I

1. a) Define the term 'Image'. Analyze the components of an Image Processing system with relevant diagram. **06**
- b) With appropriate steps, describe the intensity slicing method of Pseudo color image processing. **06**
- c) Consider the image segment shown below: **08**
 - (i) Let $V = \{10, 12\}$ and compute the length of the shortest 4,8 and m - path between p and q . If a particular path does not exist between these two points, explain why?
 - (ii) Repeat the above problem considering $V = \{10, 14\}$

14	12	10	12	10 (p)
12	12	14	14	10
14	10	10	14	12
(q)10	14	12	14	14
10	12	14	12	10

OR

2. a) Analyze briefly any two color models used in color image processing with appropriate diagrams. **06**
- b) Define resolution. Analyze the process of sampling and quantization of an image with relevant diagrams. **06**
- c) A conventional color image using the RGB coordinate requires 8 bits per color component or 24 bits per pixel. One way to reduce the bit requirement is by converting the RGB to HSI representation. **08**


Consider the RGB vectors values as given below:

$$\begin{pmatrix} (100, 100, 100) & (150, 0, 0) & (0, 150, 0) \\ (255, 0, 0) & (255, 255, 255) & (0, 0, 0) \\ (100, 150, 200) & (0, 0, 255) & (100, 200, 150) \end{pmatrix}$$

Using the expression for RGB to HSI conversion and thereby determine what are the corresponding H, S, and I values for the image

UNIT - II

3. a) For the images given in **Fig. 3.1** suitable Gaussian filters are applied, comment on the different outputs and also explain the various Gaussian properties and their implications. 12

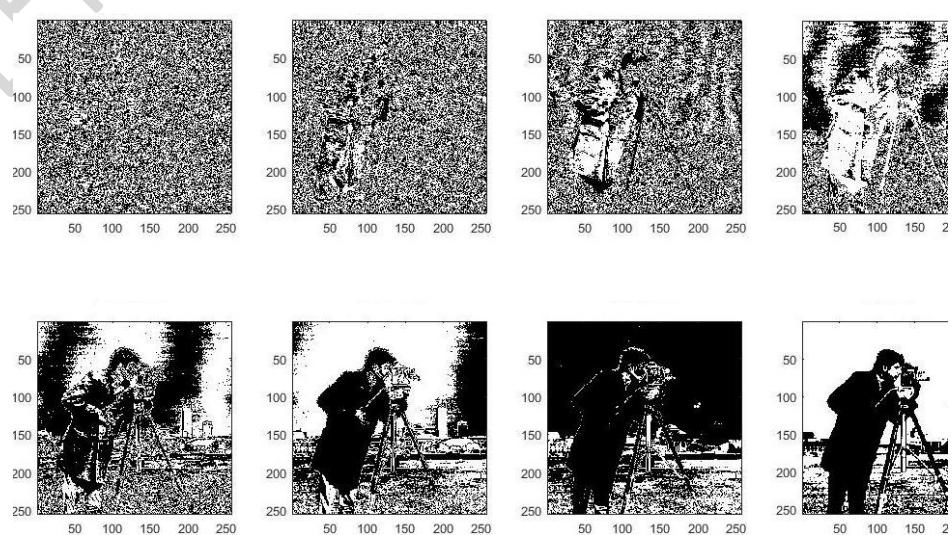


Fig 3.1

b) Consider the image given in **Fig.3.2** and thereby analyze the enhancement performed and also list its merits. 08

Original Image

OR

4. a) Given an image of size 3X3 as shown below, determine the output image **08** $g(x,y)$ using logarithmic transformation $g(x,y) = C \log_{10} (1+f(x,y))$ by choosing:

(i) $C = 1$ and (ii) $C = L / \log_{10}(1+L)$

$$f(x,y) = \begin{bmatrix} 132 & 209 & 178 \\ 255 & 29 & 187 \\ 69 & 108 & 222 \end{bmatrix}$$

b) Find the value of shaded box in the **Fig. 4.1** given below using mean and median filtering techniques. Analyze and infer the results of two methods. **12**

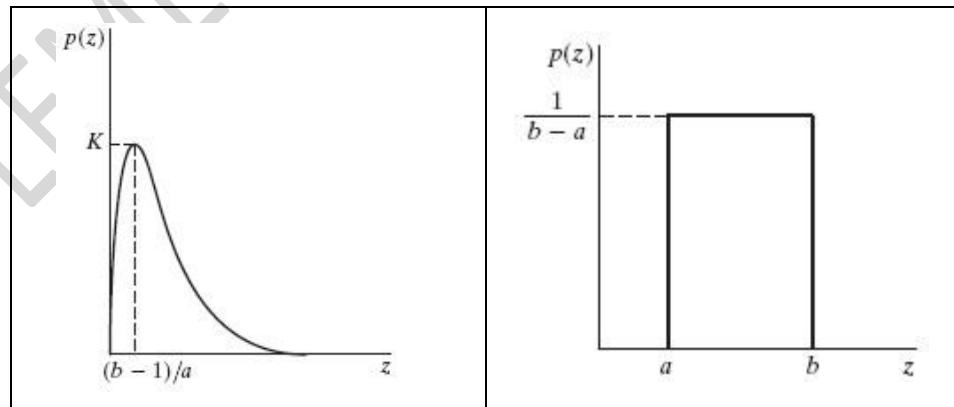

1	2	2	2	3
2	5	2	4	3
2	2	2	2	3
4	3	7	5	3
3	3	3	1	1

Fig. 4.1

UNIT – III

5. a) With suitable block diagram and equations, explain the image **08** degradation/restoration model and thereby derive the expression for a simple inverse filter.

b) Analyze the noise models given in **Fig.5.1**: **06**

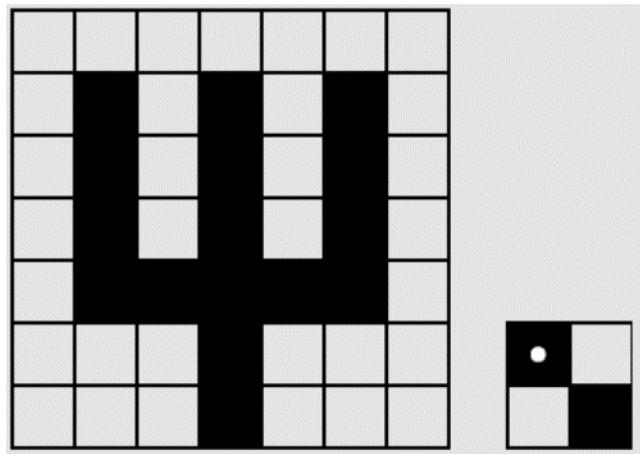
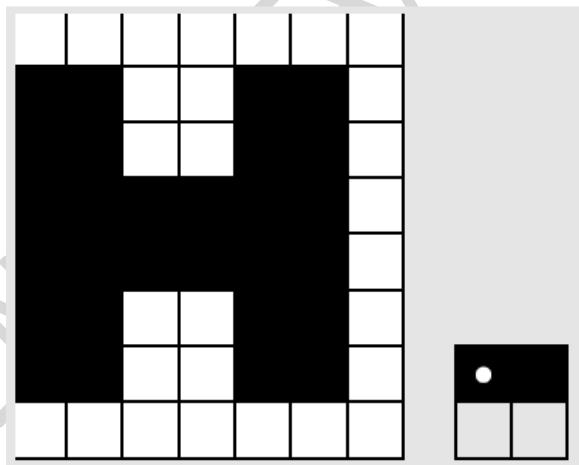
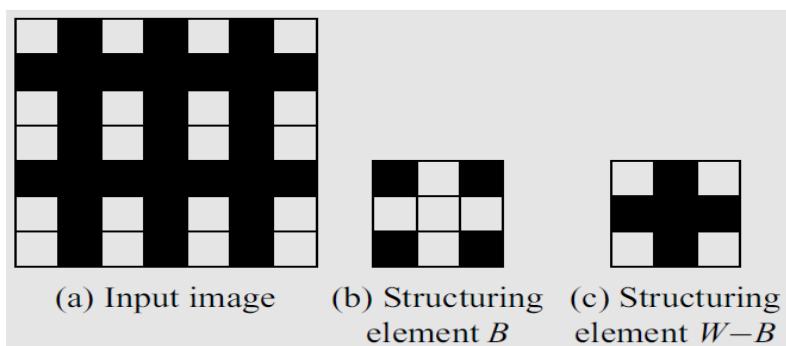


Fig.5.1

c) Analyze with relevant equations the concept of Wiener filter. **06**


UNIT - IV

6. a) Using the input image and structuring element as given below in **Fig.6.1**, 05 find the dilated version of the input image.


Fig.6.1

b) Using the input image and structuring element as given below in **Fig.6.2**, 05 find the eroded version of the input image.

Fig.6.2

c) The input image and structuring elements are shown in **Fig.6.3** below. Find 10 the hit or miss transformation for the input image.

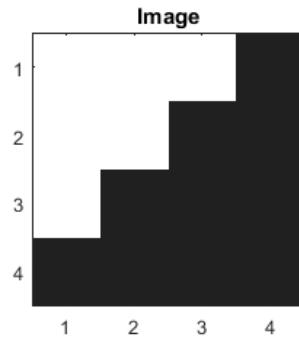


Fig.6.3

UNIT - V

7. a) With relevant equations, analyze the concept of Hough Transform. **10**

b) Apply split and merge technique to segment the image shown in **Fig.7.1** and thereby write its Quadtree representation. **10**

Fig.7.1
