

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 16EC5DCCT1

Max Marks: 100

Course: Communication Theory-1

Date: 21.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Illustrate Probability Density Function-PDF along with its properties.	10
	b) Analyze the effect of Noise in communication scenario and also brief their classification.	10

UNIT - II

2	a) Analyze the working principle of diode square law modulator for generating AM signal. Write down the relevant equations, waveforms and Spectrum for modulated, carrier and sideband components.	10
	b) A Carrier of 5Vrms with frequency of 1MHz and modulating signal of 2Vrms with frequency of 1KHz are applied to a circuit whose characteristics is $I=5+V+0.05V^2$. Compute the modulation Index and frequencies of total output.	10

OR

3	a) Analyze the working principle of diode Circuit for generating a modulated wave with only two sidebands. Draw the Spectrum provide design specifications of band pass filter to extract the desired wave.	10
	b) A carrier wave $4 \sin(2\pi \cdot 500 \cdot 10^3 t)$ volts is amplitude modulated by an audio wave of $[0.2 \sin(2\pi \cdot 500t) + 0.1 \sin(2\pi \cdot 500t)]$. Determine the upper and lower sidebands and sketch the complete spectrum of modulated wave. Estimate the total power in sidebands.	10

UNIT - III

4	a) Define Hilbert transforms state and prove its properties.	07
	b) Apply the Hilbert transforms for the following functions 1) $\cos 2\pi f_c t$; 2) $\sin 2\pi f_c t$; 3) $\delta(t)$	08
	c) Explain with a block diagram how SSB-SC signal is demodulated?	05

OR

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

5 a) Write short notes on **10**
 1) Vestigial sideband modulation with block diagram
 2) Frequency Division Multiplexing with block diagram

b) Apply the Hilbert transform to derive the expression for USSB-SC (upper sideband) signal. Explain its generation by phase discrimination method with suitable block diagram and signal representation. **10**

UNIT - IV

6 a) With relevant expression and neat block diagram explain wideband FM from basic principles taking single tone sinusoidal modulating signal. **08**

b) Compare Narrow band and Wideband FM. **06**

c) A Sinusoidal modulating waveform of amplitude 5V and a frequency of 2KHz is applied to a FM generator which has a frequency sensitivity of 40Hz/volt. Calculate the frequency deviation, modulation Index and bandwidth. **06**

UNIT - V

7 a) State and prove the Low pass sampling theorem with waveform. **08**

b) Given that Signal $X(t)=10 \cos(2000\pi t)\cos(1000\pi t)$ is sampled at its Nyquist rate,
 1) Draw the spectrum of signal and its sampled version.
 2) Comment on the frequency components that appear at the output of a reconstruction filter. **08**

c) Compare PAM, PWM, PPM in communication system. **04**
