

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

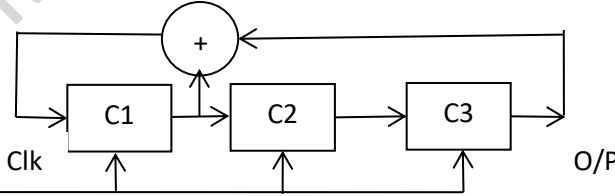
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC5PCDCT

Course: Digital Communication Theory

Semester: V


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of error function table allowed.

UNIT - I			CO	PO	Marks
1	a)	Derive an expression for the signal to quantization noise power ratio for a PCM System. Assume a midrise type of quantizer.	CO1	PO1	08
	b)	A PCM system uses a uniform quantizer followed by a 7 bit binary encoder .The bit rate of the system 56 Mega bits/sec. i)Determine the Message bandwidth for which system operates satisfactorily ii)Determine the output signal to quantization noise ratio when a sinusoidal wave of 2M Hz frequency is applied to the input.	CO2	PO2	06
	c)	With a neat sketch explain Companding in PCM .Also explain A-law and μ -law Commanding.	CO1	PO1	06
OR					
2	a)	An Audio signal of bandwidth 20 kHz is to be transmitted using a PCM system. Design a suitable PCM system. Indicate the specifications of each block of the system. Assume a channel used having a bandwidth of 60kHz	CO3	PO3	06
	b)	Analyze the problem in Transmission over baseband channel and ideal solution to overcome this. Indicate the limitations of ideal solution and illustrate how Raised Cosine spectrum would resolve this problem	CO2	PO2	08
	c)	Explain the T1 multiplexing system with block diagrams	CO1	PO1	06
UNIT - II					
3	a)	A binary sequence 101110 is applied to a DPSK transmitter.Construct the resulting DPSK signal .Sketch the resulting waveform at the DPSK transmitter output and explain modulator and demodulator with a neat block diagram.	CO2	PO2	10
	b)	Derive an expression for the probability of bit error of a binary PSK receiver	CO1	PO1	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Briefly explain the QPSK modulation Scheme with a suitable constellation diagram.	CO1	PO1	05
		OR			
4	a)	Explain the working of the Correlator type receiver	CO1	PO1	06
	b)	With a block diagram explain FSK transmitter and Receiver. Obtain its signal constellation diagram .	CO1	PO1	08
	c)	A coherent Binary FSK system transmits data at a rate of 2 Mbps over an AWGN channel. The noise is zero mean with Power spectral density is $(N_0/2) = 10^{-20}$ watts/Hz . In the absence of noise, the amplitude of the received signal is 1 μ Volt. Determine the average probability of error	CO2	PO2	06
		UNIT - III			
5	a)	With a neat diagram explain the generation of PN sequence and state its properties,	CO1	PO1	08
	b)	A spread spectrum communication system has the chip duration $T_c = 1 \mu\text{sec}$ and the information bit duration $T_b = 4.095\text{msec}$. Find the processing gain and jamming margin of the system. Assume (E_b/N_0) ratio is 10.	CO1	PO1	05
	c)	With the structure of FHSS /MFSK Transmitter and Receiver , Illustrate fast hopping FHSS for following data $bk=\{011000110011\}$ modulated by 4FSK tones $f_0,f_1,f_2,f_3 = 00,01,10,11$ respectively. PN sequence = 111001100100110101 Number of hops /symbol=2, Length of PN segment /hop=3.	CO2	PO2	07
		OR			
6	a)	Describe the operation of a Direct Sequence Spread Spectrum (DSSS) transmitter and receiver, including detailed block diagrams, relevant equations, and representative waveforms to support your explanation.	CO1	PO1	10
	b)	Obtain the PN sequence from the generator shown assume the initial state to be 100	CO3	PO3	10
		UNIT - IV			
7	a)	Derive an expression for the capacity of a binary symmetric channel.	CO1	PO1	05
	b)	Consider the following source $S=(A,B,C,D,E,F)$, $P=(0.4,0.2,0.2,0.1,0.08,0.02)$. Find the code words using Shannon Fano algorithm. Find the source efficiency, redundancy and comment.	CO1	PO1	07

		c)	<p>An information source produces a sequence of independent symbols having the following probabilities. $[A B C D E F G]$ $[1/3, 1/27, 1/3, 1/9, 1/9, 1/27, 1/27]$ Analyze its property and Find the codeword using Huffman encoding procedure and find its efficiency.</p>	CO2	PO2	08																								
			OR																											
8	a)		<p>Check the following codes given in Table are instantaneous or not with the help of Kraft McMillan Inequality</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Symbols</th> <th>Code A</th> <th>Code B</th> <th>Code C</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>0</td> <td>0</td> <td>00</td> </tr> <tr> <td>B</td> <td>10</td> <td>11</td> <td>01</td> </tr> <tr> <td>C</td> <td>110</td> <td>100</td> <td>10</td> </tr> <tr> <td>D</td> <td>1110</td> <td>110</td> <td>111</td> </tr> <tr> <td>E</td> <td>1111</td> <td>1011</td> <td>0110</td> </tr> </tbody> </table>	Symbols	Code A	Code B	Code C	A	0	0	00	B	10	11	01	C	110	100	10	D	1110	110	111	E	1111	1011	0110	CO2	PO2	06
Symbols	Code A	Code B	Code C																											
A	0	0	00																											
B	10	11	01																											
C	110	100	10																											
D	1110	110	111																											
E	1111	1011	0110																											
	b)		<p>A transmitter has an alphabet consisting of 5 letters $\{a_1, a_2, a_3, a_4, a_5\}$ and the receiver has an alphabet of four letters $\{b_1, b_2, b_3, b_4\}$. The joint probabilities of the system are given below.</p> $P(A, B) = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ a_1 & 0.25 & 0 & 0 \\ a_2 & 0.10 & 0.30 & 0 \\ a_3 & 0 & 0.05 & 0.10 \\ a_4 & 0 & 0 & 0.05 \\ a_5 & 0 & 0 & 0.05 \end{bmatrix}$ <p>Compute the different entropies of this channel</p>	CO2	PO2	10																								
	c)		<p>List the various properties of entropy</p>	CO1	PO1	04																								
			UNIT - V																											
9	a)		<p>Given the generator Matrix for a Linear Block Code.</p> $[G] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ <p>i) Find n and k value . ii) Write G in its systematic form, iii) Find all the code word. Iv) Find the error detecting and correcting capability of the code v) Design the encoder circuit.</p>	CO3	PO3	10																								
	b)		<p>Design the (3,1,2) convolution code with $g(1)=(110)$, $g(2)=(101)$, $g(3)=(111)$. Find the constraint length and rate. Draw the encoder block diagram. Find the generator matrix. Find the codeword for the message (11101) using time domain and transfer domain approach</p>	CO3	PO3	10																								
			OR																											

	10	a)	<p>For the systematic (6,3) linear block code the parity matrix P is given by $[P]=$</p> $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ <p>Find all possible code vectors. Construct the corresponding encoding circuit. If the received code vector is $R=[110010]$. Detect and correct the single error that has occurred due to noise. Draw the syndrome calculation Circuit</p>	<i>CO3</i>	<i>PO3</i>	14
		b)	<p>Discuss the need for Channel coding in a digital communication system. Mention the chief objectives of Channel code</p>	<i>CO1</i>	<i>PO1</i>	06

B.M.S.C.E. - ODD SEM 2024-25