

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

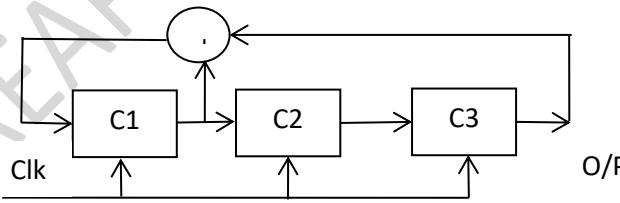
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC5PCDCT

Course: Digital Communication Theory

Semester: V


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Using relevant diagrams and equations, explain the functioning of the 1-step version of Differential Pulse code Modulation. Analyze and discuss the advantages and disadvantages of employing this technique.	CO2	PO2	08
	b)	Illustrate a schematic of a Digital Communication System (DCS) describing the signal processing stages, and elucidate the function of each component.	CO1	PO1	08
	c)	Discuss the key design considerations for implementing practical raised cosine filters in digital communication systems to minimize Inter-Symbol Interference (ISI).	CO1	PO1	04
OR					
2	a)	With relevant block diagram, interpret the operation of regenerative repeaters towards improving the performance of PCM system.	CO1	PO1	06
	b)	With a neat sketch explain Companding in PCM .Also explain A-law and μ -law Commanding.	-	-	08
	c)	Discuss the fundamental features and applications of the E1 carrier system with relevant diagram.	CO1	PO1	06
UNIT - II					
3	a)	Arrive at the equations for BPSK and derive the probability of error when symbol zero is transmitted.	CO1	PO1	10
	b)	Sketch the in-phase and quadrature-phase components of a QPSK signal for the binary sequence 110010111 choose appropriate carrier signal.	CO1	PO1	06
	c)	Draw the signal space constellation for BPSK modulation.	CO1	PO1	04
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Show how a message 101101 can be transmitted over a communication channel using DPSK, with the help of a logical block diagram also arrive at the DPSK waveform.	CO1	PO1	08
		b)	Binary data is transmitted using ASK over a AWGN channel at a rate of 2.4 MBPS. The carrier amplitude at the receiver is 1mV. Noise power spectral density , $No/2 = 10^{-15}$ W/Hz. Find the average probability of error if the detection is coherent, take $erfc(5)= 3 \times 10^{-6}$.	CO1	PO1	06
		c)	Compare the digital modulation techniques: BASK,BPSK and BFSK in terms of probability of bit error, BW and power.	CO2	PO2	06
			UNIT – III			
5	a)		Emphasize the significance of Pseudo-Noise sequences and verify properties with an example.	CO2	PO2	08
	b)		Illustrate the slow frequency hopping with hopping diagram for the message sequence 100011010001111111001. Use PN sequence 000100110101111. No. of bits/ MFSK symbol = 2, No. of MFSK TONES M=4, Length of PN segment/ hop = 3, Total No. of frequency hops = 8.	CO1	PO1	10
	c)		A communication system employs fast frequency hopping spread spectrum technique with 80 available frequencies. If the system hops through all frequencies in 0.05 seconds, determine the hop rate.	CO1	PO1	02
			OR			
6	a)		Describe the operation of a Direct Sequence Spread Spectrum (DSSS) transmitter and receiver, including detailed block diagrams, relevant equations, and representative waveforms to support your explanation.	CO1	PO1	10
	b)		Obtain the PN sequence from the generator shown assume the initial state to be 100	CO2	PO2	10
			UNIT - IV			
7	a)		Discuss the need for channel coding.	CO1	PO1	04
	b)		Given the message x_1, x_2, x_3, x_4, x_5 and x_6 with respective probabilities 0.4, 0.2, 0.2, 0.1, 0.07 and 0.03, construct a binary code by applying Shannon-Fano encoding procedure. Determine code efficiency and redundancy of the code. Comment on the result.	CO1	PO1	08
	c)		Give the detailed Huffman encoding procedure for obtaining a compact code with least redundancy.	CO1	PO1	08

OR											
8	a)	Discuss the dependence of entropy on the probability of the message for a discrete memoryless source	CO1	PO1	06						
	b)	Consider a discrete memoryless source (DMS) with source alphabet $S = S_0, S_1, S_2$, whose three distinct symbols have the following probabilities. Find $H(s), H(s)_{\max}$ and Information Rate if $r_s=3$	CO2	PO2	04						
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>S_0</td><td>S_1</td><td>S_2</td></tr> <tr> <td>1/4</td><td>1/4</td><td>1/2</td></tr> </table>	S_0	S_1	S_2	1/4	1/4	1/2			
S_0	S_1	S_2									
1/4	1/4	1/2									
	c)	Determine the capacity of the channel shown in Figure	CO3	PO3	10						
UNIT - V											
9	a)	Write a note on: Error detecting and correcting capability of block codes.	CO1	PO1	06						
	b)	Consider a binary convolutional encoder with a constraint length of $K=3$. The encoder has two generator polynomials: $G1=(1,1,1)$ and $G2=(1,0,1)$. Construct the state transition diagram for this encoder.	CO3	PO3	10						
	c)	Differentiate between Block code and Convolutional code.	CO2	PO2	04						
OR											
10	a)	For the systematic (6,3) linear block code the parity matrix P is given by $[P]=$ $\begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{matrix}$ Find all possible code vectors. Construct the corresponding encoding circuit.	CO3	PO3	10						
	b)	Using the generator polynomials $g_1= 1+x+x^2$ and $g_2= 1+x^2$. Write the convolutional code for the data sequence 101011.	CO3	PO3	10						
