

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PCDSP

Max Marks: 100

Course: Digital Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Find 4-point DFT of the sequence $x(n) = \{1, 6, 4, 3\}$ using matrix method.			<i>CO1</i>	<i>PO 1</i>	5
		b)	The first five DFT coefficients of a sequence $x(n)$ are $X(0) = 20$, $X(1) = 5+j2$, $X(2) = 0$, $X(3) = 0.2+j0.4$, $X(4) = 0$. Disclose the remaining DFT coefficients.			<i>CO1</i>	<i>PO 1</i>	5
		c)	Determine the circular convolution for the two sequences $x_1(n) = \{1, 2, 3, 4\}$, $x_2(n) = \{1, 5, 1, 3\}$ using concentric circles method			<i>CO1</i>	<i>PO 1</i>	10
			OR					
	2	a)	Find the IDFT of a sequence $X(k) = \{2, 1+j, 0, 1-j\}$			<i>CO1</i>	<i>PO 1</i>	5
		b)	Given $x(n) = \{1, 2, 0, 3, -2, 4, 7, 5\}$. Evaluate the following (a) $X(0)$ (b) $X(4)$			<i>CO1</i>	<i>PO 1</i>	5
		c)	Obtain the convolution of the sequence $\{2, 1, 2, 1\}$ and $\{1, 2, 3, 4\}$ by applying DFT and IDFT method.			<i>CO1</i>	<i>PO 1</i>	10
			UNIT - II					
	3	a)	Determine eight point DFT of the following sequences using radix2 DIFFFT algorithm $x(n) = \{1, -1, -1, -1, 1, 1, 1, -1\}$			<i>CO1</i>	<i>PO 1</i>	10
		b)	Determine IDFT of $X(k) = \{6, -2, -2j, 2, -2+2j\}$ using DIT algorithm			<i>CO1</i>	<i>PO 1</i>	10
			OR					
	4	a)	Determine the response of LTI system when input $x(n) = \{-1, 1, 2, 1\}$ and impulse response $h(n) = \{-1, 1, -1, 1\}$ by Radix 2 DIT FFT algorithm			<i>CO1</i>	<i>PO 1</i>	10
		b)	Find the output $y(n)$ of a filter whose impulse response is $h(n) = [1, -1]$ and input $x(n) = [1, -2, 2, -1, 3, -4, 4, -3]$ using overlap add method.			<i>CO1</i>	<i>PO 1</i>	10

UNIT - III					
5	a)	Using bilinear transformation design a lowpass filter monotonic in passband with -3.01 dB cutoff frequency of 0.4π rad and magnitude down at least by 15 dB at 0.75π rad.	<i>CO3</i>	<i>PO3</i>	12
	b)	Benchmark between FIR and IIR filters	<i>CO2</i>	<i>PO 2</i>	8
OR					
6	a)	Determine the digital transfer function $H(z)$ for the analog transfer function $H(s) = 1/(s+2)$. Assume $T=0.1$ sec. (i) Bilinear transfer technique (ii) Impulse Invariant technique	<i>CO3</i>	<i>PO3</i>	12
	b)	Benchmark between Butterworth and Chebyshev filters	<i>CO2</i>	<i>PO 2</i>	8
UNIT - IV					
7	a)	Design a FIR filter for the ideal frequency response using Hamming window with $N=7$ $H_d^{(ej\omega)} = e^{j3\omega}; -\pi/8 < \omega < \pi/8$ $\pi/8 < \omega < \pi$	<i>CO3</i>	<i>PO3</i>	12
	b)	Realize following system with difference equation in cascade form $y(n) = (3/4)y(n-1) - (1/8)y(n-2) + x(n) + (1/3)x(n-1)$	<i>CO2</i>	<i>PO 2</i>	8
OR					
8	a)	Design a linear Phase FIR LPF of length 17 with a pass-band edge at $\omega_p=0.5\pi$ using the frequency sampling approach.	<i>CO2</i>	<i>PO 2</i>	12
	b)	Realize following system with difference equation in parallel form $y(n) = 0.75y(n-1) - 0.125y(n-2) + 3x(n) + 7x(n-1) + x(n-2)$	<i>CO1</i>	<i>PO1</i>	8
UNIT - V					
9	a)	A signal with a sampling rate of 44.1 kHz needs to be up sampled to 96 kHz. Design a multirate system to achieve this.	<i>CO1</i>	<i>PO1</i>	8
	b)	“Noise cancellation is one of the applications of adaptive filtering”. If YES, discuss in detail.	<i>CO2</i>	<i>PO 2</i>	12
OR					
10	a)	Convert the sampling rate of a signal $x(n)$ from 300 Hz to 500 Hz using a rational factor $I/D=5/3$	<i>CO1</i>	<i>PO1</i>	4
	b)	A signal $x(n)$ is sampled at 1000 Hz. You need to process it at a lower rate of 250 Hz, then convert it back to 1000 Hz. Describe the steps involved.			4
	c)	“Line enhancement is an application of adaptive filtering”. Discuss in detail.	<i>CO2</i>	<i>PO 2</i>	12
