

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 19EC5PCFOV

Max Marks: 100

Course: Fundamentals of VLSI

Date: 01.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Discuss the VLSI design flow with appropriate diagrams. Also illustrate each step with an appropriate example. 08
	b) Explain the C-V characteristics of MOSFET in the different regions of operation. 06
	c) Explain velocity saturation and channel length modulation with neat diagrams and necessary equations. 06

UNIT - II

2	a) Explain n-well fabrication process with appropriate sketches to build a CMOS inverter. 10
	b) Apply the design rules to build a layout that realizes the following Boolean expression (constructing the layout with minimum height) and estimate the cell height and width in terms of λ . Note: Don't simplify the expression. 06

$$Y = \overline{(A + B + C) \cdot D}$$

c) Differentiate between wet and dry oxidation. 04

OR

3	a) What are layout design rules? Explain the basic λ -based design rules? Design a minimum-sized inverter layout based on the rules mentioned above. Also calculate the area for the inverter layout. 10
	b) With a neat sketch, explain LDD structure. 06
	c) Write the difference between positive and negative photoresist. 04

UNIT - III

4	a) Derive the DC characteristics for a CMOS inverter. Highlight the different regions of operation for the same when the input changes from 0 to V_{DD} . Also plot I_{DSN}/I_{DSP} vs V_{DD} , given $V_{DD} = 5V$, $V_{tn} = V_{tp} = 1.5V$. 10
	b) Find the mode of operation (cutoff, linear, or saturation) and drain current I_D for the applied bias $V_{GS} = 1.5V$, $V_{DS} = 1.5V$ with $V_{SB} = 0.5V$ for an NMOS transistor; given $V_{t0} = 0.7V$, $W/L = 4/1$, $\gamma = 0.35V$, $\lambda = 0.05 V^{-1}$, $\mu C_{ox} = 350 \mu A/V^2$, and $\Phi_s = 0.6 V$. 04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Design 4:1 multiplexer and XOR gate using Transmission gates.

06

UNIT - IV

5 a) Briefly explain the operation of CMOS implementation of a negative edge triggered master slave D flip-flop. **05**

b) Realize CMOS clocked JK latch based on AOI implementation. **05**

c) Obtain the maximum delay constraints for the combinational logic delay when a combinational logic is sequenced with the following sequencing elements:
 i. Flip-Flop
 ii. Two phase transparent latches
 iii. Pulsed latches **10**

OR

6 a) Obtain the Minimum delay constraint for the combinational logic delay, with the help of appropriate timing diagram, when sequenced with the following sequencing elements:
 i. Flip-flop
 ii. Two phase transparent latches
 iii. Pulsed latches **10**

b) For each of the following sequencing styles, determine the minimum logic contamination delay in each clock cycle (or half-cycle, for two-phase latches).
 i) Flip-Flops
 ii) Two-phase transparent latches with 50% duty cycle clocks
 iii) Two-phase transparent latches with 60 ps of non-overlap between phases
 iv) Pulsed latches with 80 ps pulse width **10**

The particulars of the flip-flops and latches used are given in Table 1.

Table 1: Question 6.(b)

	Setup time	clk-to-Q delay	D-to-Q delay	Contamination delay	Hold time
Flip-flops	65 ps	50 ps	n/a	35 ps	30 ps
Latches	25 ps	50 ps	40 ps	35 ps	30 ps

UNIT - V

7 a) Using 6T SRAM cell and appropriate waveforms, explain the Read and Write operations. Also discuss the constraints during the read and write operation. **10**

b) Realize a 4-word by 6-bit ROM using pseudo-nMOS pull-ups with the following contents:
 word0: 010101
 word1: 011001
 word2: 100101
 word3: 101010 **06**

c) Draw 1 T DRAM cell and explain its write and read operations. **04**
