

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 19EC5PCFOV

Course: Fundamentals of VLSI

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Discuss the various design abstractions in VLSI design with the help of the Gajski Y-chart. **10**
 b) Briefly discuss the following non-idealities in I-V characteristics of MOS devices:
 (i) velocity saturation and (ii) body effect. **06**
 c) An nMOS transistor has a threshold voltage of 0.45 V and a supply voltage of $V_{DD} = 1.2$ V. A circuit designer is evaluating a proposal to reduce V_t by 100 mV to obtain faster transistors. By what factor would the sub-threshold leakage current increase at room temperature at $V_{gs} = 0$? Assume $n = 1.4$. **04**

OR

2 a) Illustrate the CMOS process flow for formation of NFET & PFET on a substrate material starting from epitaxial layer using masks. **10**
 b) Analyse with the help of graph the behaviour of intrinsic MOS gate capacitance as a function of a V_{gs} and V_{ds} of a MOS capacitance. **10**

UNIT - II

3 a) With the help of neat diagrams, explain the process of photolithography used to pattern a layer of polysilicon in the semiconductor manufacturing process. **07**
 b) Discuss any two CMOS process enhancements briefly. **06**
 c) With the help of λ -based design rules, estimate the area of a 3-input NOR gate. **07**

OR

4 a) Design a CMOS circuit and stick diagram to realize the Boolean function $F = \overline{X} + YZ + \overline{XYZ}$ using the minimum number of transistors possible. Also find the area estimate of the layout pattern thus drawn. **09**
 b) With the help of neat diagrams, discuss the fabrication of a CMOS inverter starting from a silicon wafer. **11**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

5 a) With the help of relevant diagrams, discuss the DC characteristics of a CMOS inverter. **10**

b) Design a two-input NAND gate using transmission gates. **06**

c) The output of an nMOS transistor is used to drive the gate of another nMOS transistor as shown in Figure 1. Given: $V_{DD} = 3.3$ V, $V_t = 0.4$ V. Find the output voltage V_{out} when the input voltages are at the following values: **04**

i. $V_a = 2.0$ V and $V_b = 2.5$ V

ii. $V_a = 3.3$ V and $V_b = 1.8$ V

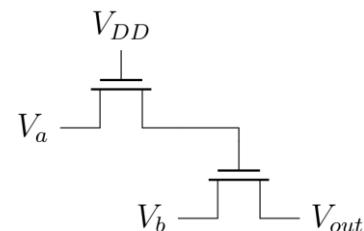


Figure 1: Question 4.(c)

OR

6 a) Design a 4:1 MUX using 2:1 MUX implemented by a tristate inverter and realize an XOR function using transmission gate. **10**

b) Highlight the significance of noise margin in a CMOS. An inverter has the transfer characteristics shown in Figure 2. Determine the values of V_{IL} , V_{IH} , V_{OL} , and V_{OH} . Find the noise margin (Assume suitable values from within range). **10**

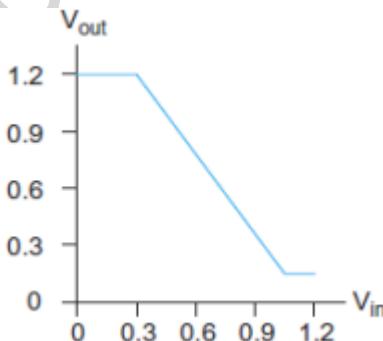


Figure 2: Question 6.(b)

UNIT - IV

7 a) With the help of neat diagrams, discuss the operation of a bistable element. **08**

b) Establish the relevance for master-slave JK flip flop; and explain its construction and working with the help of relevant circuit diagrams. **08**

c) Demonstrate the realization of a D-latch using tristate inverters. **04**

OR

8 a) Briefly describe the three methods of sequencing combinational circuits. **09**

b) Establish the Min-delay constraints in the context of a flip-flop. **05**

c) Briefly explain the concept of time borrowing with a neat illustration. **06**

UNIT - V

9 a) Explain the read and write operation in a 6 transistor SRAM cell with the help of neat diagrams. **10**

b) Briefly describe the construction and operation of dynamic RAM with neat diagrams. **06**

c) With the help of a block diagram of NAND ROM, mention one disadvantage and one advantage with NAND ROM. **04**

OR

10 a) Explain DRAM subarray architecture with relevant diagrams. **10**

b) Explain the trade-offs between open, folded and twisted bit-lines in dynamic RAM arrays **10**
