

# B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

## September / October 2023 Supplementary Examinations

**Programme: B.E.**

**Semester: V**

**Branch: Electronics and Communication Engineering**

**Duration: 3 hrs.**

**Course Code: 19EC5PCFOV**

**Max Marks: 100**

**Course: Fundamentals of VLSI**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### UNIT - I

1. a) Derive the long channel I-V characteristics of a MOSFET with proper equations. **08**
- b) Explain the mobility degradation and velocity saturation with proper equations and graphs. **08**
- c) Write a short note on Body effect. **04**

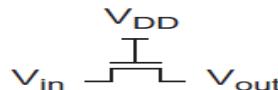
### UNIT - II

2. a) Briefly explain all the steps in CMOS fabrication process. **10**
- b) Draw the CMOS circuit and Stick diagram for the equation  $Y = \overline{(A + B) \cdot C}$  **06**
- c) Write a Short note on Carbon Nano Tubes. **04**

### OR

3. a) Explain Photolithography process with neat diagram. **04**
- b) Draw the CMOS circuit, CMOS stick diagram and CMOS layout for the given expression. **10**

$$Y = \overline{(AB + CD) \cdot E}$$


- c) Write a Short note on:
  - (1) Silicon on Insulator (SOI).
  - (2) Differentiate LOCUS and STI method.

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

### UNIT - III

4. a) Suppose  $V_{DD}=1.8V$  &  $V_t=0.6V$ . Find the output voltage for the following. 06

i)  $V_{in}=0V$ . ii)  $V_{in}=0.7V$ . iii)  $V_{in}=1.2V$ . iv)  $V_{in}=1.6V$ .



b) Explain beta ratio effects with proper expressions and characteristics. 06

c) Explain tristate buffer, tristate inverter and 2:1 transmission gate multiplexer with neat circuit diagram. 08

### UNIT - IV

5. a) Design an AOI based NOR SR-Latch and implement the same using CMOS Circuit. With truth table, Illustrate its operation. 10

b) Analyse the given Design sequencing styles to determine the minimum logic contamination delay in each clock cycle (or half-cycle, for two-phase latches). Assume there is 20ps clock skew. (i) Flip-flops. (ii) Two-phase transparent latches with 50% duty cycle clocks. (iii) Two-phase transparent latches with 40 ps of nonoverlap between phases. (iv) Pulsed latches with 80 ps pulse width. 10

|            | Setup Time | $clk$ -to- $Q$ Delay | $D$ -to- $Q$ Delay | Contamination delay | Hold Time |
|------------|------------|----------------------|--------------------|---------------------|-----------|
| Flip-Flops | 65 ps      | 50 ps                | n/a                | 35ps                | 30 ps     |
| Latches    | 25ps       | 50ps                 | 40ps               | 25ps                | 30ps      |

### OR

6. a) Design an AOI based clocked NAND- JK Latch and implement the same using CMOS circuit. With a truth table, Illustrate its operation. 10

b) For each of the following sequencing styles, determine the maximum logic propagation delay available within a 400ps clock cycle. The clock skew between any two elements can be up to 40 ps and no-time borrowing takes place. (i) Flip-flops. (ii) Two-phase transparent latches. (iii) Pulsed latches with 70 ps pulse width. 10

|            | Setup Time | clock-to-Q Delay | D-to-Q Delay | Contamination Delay | Hold Time |
|------------|------------|------------------|--------------|---------------------|-----------|
| Flip-Flops | 65 ps      | 50 ps            | n/a          | 35 ps               | 30 ps     |
| Latches    | 25 ps      | 50 ps            | 40 ps        | 35 ps               | 30 ps     |

## UNIT - V

7. a) With neat illustrations, discuss the Read and Write operation on a 6-transistor SRAM Cell. **10**

b) Design 4-word by 6-bit ROM using pseudo-nMOS pull-ups with the following contents. Sketch DOT diagram for the same. **10**

Word 0: 010101; Word 1: 011001; Word2: 100101; Word 3: 101010

\*\*\*\*\*