

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

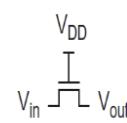
Programme: B.E.

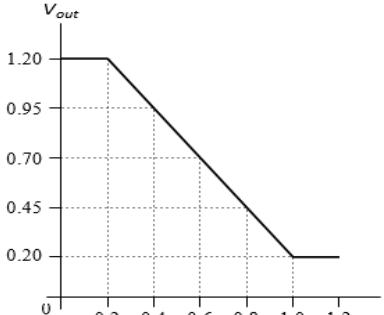
Branch: Electronics and Communication Engineering

Course Code: 22EC5PCFOV

Course: Fundamentals of VLSI

Semester: V


Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the long channel I-V characteristics of a MOSFET with neat diagram.	CO2	PO2	08
	b)	Analyze with a suitable graph, the behavior of intrinsic MOS capacitance as a function of : a. V_{GS} b. V_{DS}	CO2	PO2	08
	c)	Write a short note on channel length modulation?	-	-	04
UNIT - II					
2	a)	Describe the fabrication of CMOS inverter using n-well process with neat diagram.	CO1	PO1	10
	b)	Design the CMOS circuit and stick diagram for the equation $Y = \bar{A} \cdot B + C \cdot \bar{D}$	CO3	PO3	06
	c)	Write a Short note on FinFETs.	-	-	04
UNIT - III					
3	a)	Suppose $V_{DD}=1.8V$ & $V_t=0.6V$. Find the output voltage for the following. i) $V_{in}=0V$. ii) $V_{in}=0.7V$. iii) $V_{in}=1.2V$. iv) $V_{in}=1.6V$.	CO2	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Analyze the graph and determine the noise margins for the inverter whose DC characteristics is as shown in Figure 1. Also estimate the output voltage of the circuit in Figure 2 if the input voltage is 0.4 V, using the same characteristics.</p> <p>Figure 1</p> <p>Figure 2</p>	CO2	PO2	06																		
	c)	<p>Design a tristate inverter and 2x1 multiplexer using transmission gates.</p>	CO3	PO3	08																		
		OR																					
4	a)	<p>Design 2 input XOR and 2 input NAND gates using transmission gates.</p>	CO3	PO3	05																		
	b)	<p>Analyze the DC Characteristics of a CMOS Inverter indicating the various regions of operations.</p>	CO2	PO2	07																		
	c)	<p>Design an AOI based clocked NAND- JK Latch and implement the same using CMOS circuit and illustrate its operation.</p>	CO3	PO3	08																		
		UNIT - IV																					
5	a)	<p>Analyse the given design sequencing styles to determine the minimum logic contamination delay in each clock cycle (or half-cycle, for two-phase latches). Assume there is zero clock skew.</p> <p>(i) Flip-flops.</p> <p>(ii) Two-phase transparent latches with 50% duty cycle clocks.</p> <p>(iii) Two-phase transparent latches with 60 ps of nonoverlap between phases.</p> <table border="1" data-bbox="330 1459 1159 1729"> <thead> <tr> <th></th> <th>Setup Time</th> <th>clk-to-Q Delay</th> <th>D-to-Q Delay</th> <th>Contamination delay</th> <th>Hold Time</th> </tr> </thead> <tbody> <tr> <td>Flip-Flops</td> <td>65 ps</td> <td>50 ps</td> <td>n/a</td> <td>35ps</td> <td>30 ps</td> </tr> <tr> <td>Latches</td> <td>25ps</td> <td>50ps</td> <td>40ps</td> <td>25ps</td> <td>30ps</td> </tr> </tbody> </table>		Setup Time	clk-to-Q Delay	D-to-Q Delay	Contamination delay	Hold Time	Flip-Flops	65 ps	50 ps	n/a	35ps	30 ps	Latches	25ps	50ps	40ps	25ps	30ps	CO2	PO2	10
	Setup Time	clk-to-Q Delay	D-to-Q Delay	Contamination delay	Hold Time																		
Flip-Flops	65 ps	50 ps	n/a	35ps	30 ps																		
Latches	25ps	50ps	40ps	25ps	30ps																		
	b)	<p>With neat illustrations, discuss the Read and Write operation on a 6-transistor SRAM Cell.</p>	CO2	PO2	10																		
		OR																					
6	a)	<p>Illustrate the min delay and max delay constraints with respect to flip flops and 2-phase transparent latches with relevant timing diagrams.</p>	CO2	PO2	10																		

	b)	Implement the sub array architectures of DRAM and describe its operation.	CO2	PO2	10
		UNIT - V			
7	a)	Illustrate Adhoc testing and parallel scan based testing in DFT technique.	CO2	PO2	10
	b)	Write a short note of the following: i) ATPG. ii) Boundary Scan	-	-	10

REAPPEAR EXAMS 2023-24