

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PCFOV / 22EC5PCFOV

Max Marks: 100

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate PMOS and NMOS as a switch with switch level models	CO 1	PO 1	6
	b)	Implement a 3 Input NAND GATE and NOR GATE using CMOS logic.	CO 1	PO 2	6
	c)	With suitable graphs illustrate the various types of intrinsic MOS Capacitance models	CO 1	PO 2	8
OR					
2	a)	Illustrate the effect of channel length modulation in a MOSFET.	CO 1	PO 2	6
	b)	Highlight the significance of subthreshold leakage in MOSFETs	CO 1	PO 2	6
	c)	Deduce an expression for drain current in long channel MOSFETS	CO 1	PO 2	8
UNIT - II					
3	a)	Illustrate, with the help of neat diagrams, the process by which a given layer in the planar CMOS fabrication technology can be patterned as desired. Also discuss the difference between positive and negative photoresist.	CO 1	PO 1	10
	b)	Implement the gate level and stick diagram for the function $Y = \overline{(A+B+C)} \cdot D$ using CMOS logic. Also estimate the cell width and height.	CO 2	PO 2	10
OR					
4	a)	Discuss in detail, the λ -based design rules with neat illustrations.	CO 1	PO 1	10
	b)	Implement a 2:1 Mux using transmission gates.	CO 2	PO 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Deduce the DC transfer function for a static CMOS Inverter.	<i>CO 2</i>	<i>PO 1</i>	10
	b)	Implement a SR latch based NOR gates.	<i>CO 3</i>	<i>PO 3</i>	10
OR					
6	a)	What is noise margin? Obtain an expression for N_{ML} and N_{MH} from transfer characteristics of inverter.	<i>CO 2</i>	<i>PO 1</i>	10
	b)	Show the implementation of a D latch using a tristate buffer.	<i>CO 3</i>	<i>PO 3</i>	10
UNIT - IV					
7	a)	Illustrate the static sequencing techniques with relevant timing diagrams and highlight its significance.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	“In the system using transparent latches, clock skew does not degrade performance.” Justify the statement.	<i>CO 2</i>	<i>PO 2</i>	10
OR					
8	a)	Suggest and describe a suitable design to implement noise sources for hold margin,	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Illustrate the concept of time borrowing with a suitable example.	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - V					
9	a)	Highlight the significance of silicon debug principles. Classify the same.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Describe the stuck at zero and stuck at one faults for effective fault detection in transistors.	<i>CO 1</i>	<i>PO 1</i>	10
OR					
10	a)	Highlight the importance of Shmoo plots in failure analysis. Analyze the various probabilities of failures using Shmoo plots,	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Briefly describe the methods to verify proper functionality using BIST.	<i>CO 1</i>	<i>PO 1</i>	10
