

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PCFOV / 22EC5PCFOV

Max Marks: 100

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive a model relating the current and voltage (I-V) for an nMOS transistor in each regions.	CO 1	PO 1	10
		b)	Discuss the detailed MOS capacitance model with relevant equations and graph?	CO 1	PO 1	10
OR						
	2	a)	Represent a 3 input CMOS NOR gates and describe it's working.	CO 1	PO 1	6
		b)	Discuss in detail the partitioning of Digital VLSI design in different levels of abstractions.	CO 1	PO 1	8
		c)	Describe in detail the working principle of CMOS logic gate.	CO 1	PO 1	6
			UNIT - II			
	3	a)	Describe the Well and Channel Formation in CMOS technologies with a neat diagram.	CO 2	PO 1	10
		b)	Analyse the λ based design rules and guidelines involved in CMOS layout .	CO 2	PO 2	10
OR						
	4	a)	Analyse the different design rules used to build reliably functional circuits.	CO 2	PO 2	10
		b)	Describe the CMOS fabrication process.	CO 2	PO 1	10
			UNIT - III			
	5	a)	Analyse the DC transfer characteristics of a CMOS inverter highlighting all the different regions of operation.	CO 2	PO 2	10
		b)	Illustrate the operation of the Pass transistor logic structures with suitable examples highlighting their threshold drop.	CO 2	PO 2	10

OR					
6	a)	Propose a suitable two phase clocking strategy for any sequential circuit and analyse the working of the same.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Illustrate the working of a Simple CMOS SR Latch with the block diagram.	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - IV					
7	a)	Illustrate with the diagram the circuit structure and the operation of simple SRAM cells.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Design a four-transistor resistive-load SRAM cell with read and write operation with waveform.	<i>CO 3</i>	<i>PO 3</i>	10
OR					
8	a)	Illustrate the 4T DRAM cell highlighting the significance of wordline and bitline.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Design a DRAM Subarray Architecture using a typical subarray size of 256 words by 512 bits.	<i>CO 3</i>	<i>PO 3</i>	10
UNIT - V					
9	a)	Describe the different Faults types and Models.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Illustrate LFSR model and BILBO for Built in self test.	<i>CO 2</i>	<i>PO 2</i>	10
OR					
10	a)	Discuss the different models to detect the faults in DUT.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Illustrate the different Scan design techniques and mention the general methods for testing with the scan path approach.	<i>CO 2</i>	<i>PO 2</i>	10
