

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC5PCMTA

Course: Microwave Theory and Antenna

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	A commercial coaxial cable has a characteristic impedance of 75Ω . This cable is integrated with a load of $50-j25\Omega$. Determine the value of the input reflection coefficient of this line? Do pure standing waves exist on this line?	CO1	PO1	04
		b)	Derive the relationship between Voltage Standing wave ratio and input reflection coefficient. Consider a commercial WiFi antenna operating at 2.4GHz, this antenna has an input reflection coefficient of -15dB. Compute the corresponding VSWR. Is this a good antenna?	CO1	PO1	10
		c)	A transmission line has the following parameters: $R = 2\Omega/m$ $G=0.5\text{mmho}/m$, $L=8\text{nH}/m$ and $C=0.23\text{pF}/m$. The aforementioned line is operating at 1GHz. Determine the characteristic impedance of the line and the propagation constant of this line.	CO1	PO1	06
			UNIT - II			
	2	a)	With the neat sketch, explain the construction of an E-plane Tee junction Also, deduce the S-parameters for this junction.	CO1	PO1	08
		b)	Consider a H-plane metallic Tee-junction, compute the power delivered to the loads of 40 ohm and 60 ohm connected to arms 1 and 2, when 10mW power is injected to the matched port 3	CO1	PO1	07
		c)	A shunt impedance 'Z' is connected across a transmission line with characteristic impedance Z_0 . Determine the S-matrix for this two-port network	CO2	PO1	05
			OR			
	3	a)	A commercial 3-port circulator operating in the X-band has the following specifications at 10GHz. Insertion loss of 1dB, isolation between ports is 30dB and VSWR at all the ports is 1.5. Evaluate the S-matrix for this commercial circulator.	CO2	PO1	08
		b)	A magic-T with ports 1, 2 (collinear) and 4 (difference arm) is terminated by impedances which offer reflection coefficients $\Gamma_1=0.5$, $\Gamma_2=0.6$ and $\Gamma_4=0.8$ respectively. If 1W power is fed at port	CO2	PO1	12

		3 (sum arm). Calculate the power reflected at port 3 and power transmitted to other ports.			
		UNIT - III			
4	a)	Derive the expression for received power of a radio communication link. What is the maximum power received at a distance of 0.5 km over free space consisting of a transmitting antenna with 25dB gain and a receiving antenna of gain 20 dB. the transmitting antenna input is 150 watts. Operating frequency is 1GHz.	CO1	PO1	08
	b)	Define the following antenna parameters (i)Radiation Pattern (ii) Directivity & gain (iii) Radiation Intensity.	-	-	04
	c)	Derive the expression for effective height of an antenna in terms of radiation resistance and effective aperture.	CO1	PO1	08
		UNIT - IV			
5	a)	Derive the expression for radiation resistance of short dipole antenna.	CO1	PO1	10
	b)	Analyze a suitable array system of two isotropic point sources in which the peak of the radiation pattern is parallel to the array axis.	CO2	PO2	10
		OR			
6	a)	Derive the far-field radiation pattern of a linear array N isotropic point sources with equal amplitude and spacing.	CO1	PO2	10
	b)	An array of isotropic radiators is operated at a frequency of 6GHz and is required to produce a broadside array pattern. Determine first null beam width if array length is 10m and also the directivity.	CO2	PO2	06
	c)	State and explain principle of pattern multiplication.	CO1	PO1	04
		UNIT - V			
7	a)	Derive the expression for the electric field distribution across the aperture of a parabolic reflector.	CO1	PO1	08
	b)	List the salient features of microstrip antennas.	-	-	04
	c)	Derive the expression for a far field patterns of thin linear antennas.	CO1	PO1	08
