

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 23EC5PCMTA / 22EC5PCMTA

Max Marks: 100

Course: Microwave Theory and Antenna

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
	1	a)	List out the various applications of microwaves in both military and commercial domains	CO 1	PO 1	10
		b)	Consider a commercial WiFi antenna operating at 2.4GHz, this antenna has an input reflection coefficient of -15dB. Compute the corresponding VSWR. Is this a good antenna?	CO 2	PO 2	4
		c)	A commercial coaxial cable has a characteristic impedance of 75Ω . This cable is integrated with a load of $50-j25\Omega$. What is the value of the input reflection coefficient of this line ? Do pure standing waves exist on this line ?	CO 2	PO 2	6
			OR			
	2	a)	A LAN cable has a characteristic impedance of 50Ω and is terminated in a load impedance of $75+40j\Omega$. Calculate the reflection coefficient and VSWR	CO 1	PO 1	6
		b)	Compute the input reflection coefficient and the Voltage standing wave ratio of a 75Ω line, terminated with a 100Ω amplifier. Does the amplifier receive maximum power from the source through this transmission line ?	CO 2	PO 2	6
		c)	List the various IEEE microwave frequency bands. In addition to this list out the carrier frequencies and/or bands for the following commercial services i). WiFi ii). GPS iii). 4G-LTE iv). 5G FR1 v). 5GFR2 bands	CO 1	PO 1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Illustrate the concept of a Faraday rotation isolator with necessary diagrams.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Consider a H-plane metallic Tee-junction, compute the power delivered to the loads of 40 ohm and 60 ohm connected to arms 1 and 2, when 10mW power is injected to the matched port 3	<i>CO 1</i>	<i>PO 1</i>	10
	OR				
4	a)	A magic-T with ports 1, 2 (collinear) and 4 (difference arm) is terminated by impedances which offer reflection coefficients $\Gamma_1 = 0.5$, $\Gamma_2 = 0.6$ and $\Gamma_4 = 0.8$ respectively. If 1W power is fed at port 3 (sum arm). Calculate the power reflected at port 3 and power transmitted to other ports	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Prove that it is impossible to construct a perfectly matched, lossless, reciprocal three-port junction from first principles. Clearly state the properties used to prove this statement	<i>CO 1</i>	<i>PO 1</i>	10
UNIT - III					
5	a)	Explain the physical concept of radiation with appropriate sketches and equations.	<i>CO 2</i>	<i>PO 2</i>	8
	b)	Apply the concept of Power theorem to an isotropic point source, and hence deduce the Poynting vector in terms of the radiated power from first principles.	<i>CO 2</i>	<i>PO 2</i>	6
	c)	Define the terms (i) Radiation intensity and (ii) Beam efficiency. Also, evaluate the maximum permissible value for beam efficiency	<i>CO 1</i>	<i>PO 1</i>	6
	OR				
6	a)	Derive the effective height of the antenna in terms of radiation resistance and effective aperture	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Evaluate directivity and gain from first principles. Identify the gain values of the antennas for the following situations, the answer could be one of the following: isotropic/ low gain / moderate gain with unidirectional pattern / high gain with narrow beam <ul style="list-style-type: none"> ● Satellite receiver antenna for TV signal reception ● WiFi signal illuminating an indoor environment ● Point to Point link between antenna towers for cellular communication 	<i>CO 2</i>	<i>PO 2</i>	10

UNIT - IV					
7	a)	Deduce the radiation resistance of a short dipole antenna	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Analyze the radiation patterns of two isotropic point sources with the following excitations : Source 1 = 1.526 W at a phase of 0.005 degrees and Source 2 = 1.526 W at a phase of 0.005 degrees. The reference axis could be assumed as per your convenience. Also, sketch the pattern when both these antennas are separated by one-half wavelength	<i>CO 2</i>	<i>PO 2</i>	10
OR					
8	a)	Deduce the radiation resistance of an antenna whose length is equal to half of wavelength , operating at 2.4GHz.	<i>CO 2</i>	<i>PO 2</i>	10
	b)	Analyze the radiation patterns of two isotropic point sources with the following excitations : Source 1 = 43.265 W and Source 2 = 43.265 W .The sources are energized at opposite phase. The reference axis could be assumed as per your convenience. Also, sketch the pattern when both these antennas are separated by one-half wavelength	<i>CO 2</i>	<i>PO 2</i>	10
UNIT - V					
9	a)	Analyse the construction and working principle of a typical Yagi Uda antenna	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Analyze the steps to design an inset fed patch antenna on a commercial software. Indicate the numerical values at appropriate points to realize a 2.4 GHz patch antenna	<i>CO 2</i>	<i>PO 2</i>	10
OR					
10	a)	Illustrate and explain the various feeding methods for a parabolic reflector.	<i>CO 1</i>	<i>PO 1</i>	10
	b)	Illustrate with a neet diagram, the working of Horn Antenna and parabolic Reflectors.	<i>CO 2</i>	<i>PO2</i>	10
