

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Communication Engineering

Duration: 3 hrs.

Course Code: 19EC6CE1CV

Max Marks: 100

Course: Computer Vision

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Analyze how clustering improves data organization and explore the core principles of the K-Means algorithm in efficiently segmenting datasets based on similarity patterns	1	1	10
		b)	Analyze how clustering aids in structuring data and explore the principles of the K-Means algorithm in efficiently segmenting datasets, using the data points (8,9), (9,10), (16,18), (17,19)	2	2	10
OR						
	2	a)	Evaluate how K-Means clustering determines similarity among data points, and assess its effectiveness in handling complex datasets with varying distributions.	1	1	10
		c)	Given the dataset points (4,5), (5,6), (12,14), (13,15), apply K-Means clustering with K=2 by determining initial centroid positions and performing the first iteration of cluster assignments based on distance calculations.	2	2	10
			UNIT - II			
	3	a)	Apply the Hough Transform for detecting lines and structural features in various image processing applications, improving accuracy in edge detection and object recognition.	1	1	10
		b)	Analyze the strengths and weaknesses of LOG and DOG edge detection techniques in image processing, focusing on their effectiveness in detecting fine details and handling noise across various applications.	2	2	10
OR						
	4	a)	How does the Hough Transform enable efficient line detection in image processing, and what factors influence its accuracy in various applications?	1	1	10

	b)	Analyze the differences in computational efficiency between SIFT and SURF for real-time object recognition, considering factors such as processing speed, memory usage, and robustness in dynamic environments.	2	2	10
		UNIT - III			
5	a)	Utilize wavelet descriptors to improve texture segmentation in satellite imagery.	1	1	10
	b)	Analyze the effectiveness of deformable models in tracking non-rigid objects in motion.	2	2	10
		OR			
6	a)	Apply snakes and active contours for image segmentation to accurately detect object boundaries, improving precision in feature extraction and classification across various applications	1	1	10
	b)	Assess the impact of different parameter settings on the convergence speed of level set methods in shape segmentation.	2	2	10
		UNIT - IV			
7	a)	Demonstrate the role of arbitrary section planes in analyzing structural details in engineering models.	1	1	10
	b)	Examine how 3D image processing techniques enhance precision in scientific measurements.	2	2	10
		OR			
8	a)	Implement ray tracing to achieve realistic rendering in 3D graphics applications.	1	1	10
	b)	Compare the effectiveness of different 3D dataset sources in various imaging applications, assessing their accuracy, resolution, and adaptability across industries	2	2	10
		UNIT - V			
	a)	How can iris recognition improve security in access control systems?	1	1	10
	b)	How does digital signature verification ensure cybersecurity in electronic transactions?	2	2	10
		OR			
10	a)	How does super resolution help in satellite image analysis?	1	1	10
	b)	Analyze the impact of facial recognition on privacy and security concerns.	2	2	10
