

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 19EC6OE1EM

Course: Electronic Engineering Materials

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 07.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	A second-order reaction was observed. The reaction rate constant at three degrees Celsius was found to be 8.9×10^{-3} L/mol and 7.1×10^{-2} L/mol at 35 degrees Celsius. What is the activation energy of this reaction? Give description of all the parameters encountered in the equation used.	<i>CO1</i>	<i>PO1</i>	10
	b)	Classify the engineering materials based on nature and applications. List materials under each category and the uses of the same.	<i>CO 1</i>	<i>PO1</i>	10
UNIT - II					
2	a)	Describe the conduction process of Metals, Semiconductors and Insulators with relevant band diagrams	<i>CO 1</i>	<i>PO1</i>	10
	b)	An n-type semiconductor is known to have an electron concentration of 5×10^{17} (m) ⁻³ . Upon application of electric field 1000 V/m, the drift velocity measured is found to be 350 m/s. Determine the conductivity of the material. Give description of all the parameters encountered in the equation used.	<i>CO 1</i>	<i>PO1</i>	10
OR					
3	a)	Define polarization. Explain different types of polarization with relevant diagrams. Highlight the frequency dependence of polarization.	<i>CO 1</i>	<i>PO1</i>	10
	b)	At room temperature the electron conduction of PbS is 25 (ohmm) ⁻¹ . The electron and hole mobilities are 0.06 and 0.02 m ² /Vs respectively. Compute the intrinsic carrier concentration of PbS at room temperature. Explain the importance of each parameter in the equation used.	<i>CO 1</i>	<i>PO1</i>	10
UNIT - III					
4	a)	Differentiate between phosphorescence, fluorescence and luminance. List the materials that exhibit these phenomenon and the practical uses of the same.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Highlight the absorption process involved in direct and indirect type of semiconductor with relevant diagrams and equations.	CO 1	PO1	10
UNIT - IV					
5	a)	Describe the working principle of thermal evaporation deposition process with a neat schematic diagram. List any three advantages and disadvantages of the deposition method.	CO 2	PO2	10
	b)	With relevant schematic, explain the process flow of CVD process. List any two applications of CVD process.	CO 2	PO2	10
UNIT - V					
6	a)	Explain the working principle of Bragg's Law and Highlight the significance of X-rays used in determining the crystal structure.	CO 2	PO2	10
	b)	Discuss the uses and working principle of SEM with a schematic diagram and also write the different type of signals generated when the electron beam hits the surface of the sample	CO 2	PO2	10
OR					
7	a)	Analyze how AFM can be used to measure thickness of a thin film.	CO 2	PO2	10
	b)	Analyze the advantage and disadvantage of using TEM.	CO 2	PO2	10
