

B.M.S. College of Engineering, Bengaluru-560019

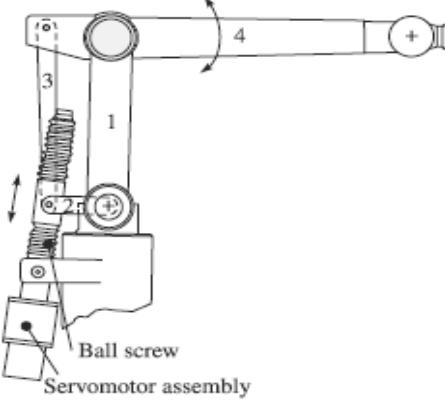
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 22EC6OE1IR


Course: Introduction To Robotics

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Analyze the considerations for selection of a motor for a Robotic System	CO 2	PO2	8
	b)	Classify the types of grippers applied in industrial robots.	CO 1	PO1	8
	c)	What kilowatt or horsepower is required in a motor used to drive a 2-meter robot arm lifting a 25 kg mass at 10 rpm (Figure 1)?	CO 1	PO1	4
<p>Fig 1.</p>					
OR					
2	a)	Analyze the working principle of DC Servo motor.	CO 2	PO2	8
	b)	With the help of a neat diagram, discuss the various subsystems of an industrial Robot.	CO 1	PO1	8
	c)	A screw mechanism for the transmission of motion from the motor to link 4 via link 3 is shown in Figure 2. If the nut on Link 3 has to be translated by 50 mm while moving on the screw of 5 mm pitch, the screw should be turned by ' θ ' times. Find the value of ' θ '.	CO 1	PO1	4
<p>Fig 2.</p>					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – II

3 a) Highlight the important characteristics to be considered for selecting a sensor for different applications.

b) Analyze the Robot Vision ecosystem, providing aspects of front-end and backend processing.

OR

4 a) Discuss the working principle behind the application of incremental and absolute optical encoders.

b) Analyze the working of a Non-Contact Capacitive sensor with a neat diagram and list its applications

UNIT - III

5 a) A cartesian manipulator is shown in Figure. 3. Perform the following for the same:
 (i) Assign link-frames (ii) Obtain DH-Parameter table (iii) obtain HTMs (i.e., H01, H12 & H23) and (iv) Final forward transformation matrix. [Use a kinematic diagram and label all frames].

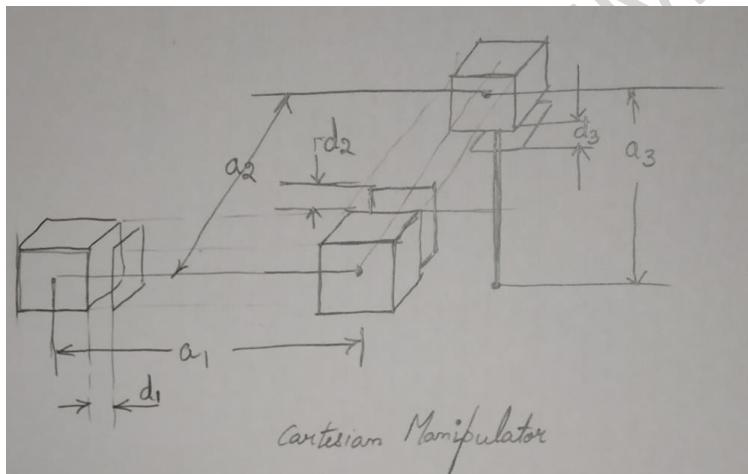


Fig 3

b) Provide the reasoning behind the basis for calculating the DOF for a Robot Architecture using Grubler's Formula. Calculate the DOF for the Manipulators shown in Figure 4 and Figure 5 using Grubler's formula.

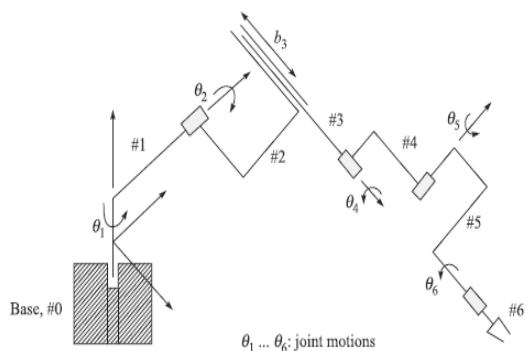


Fig 4

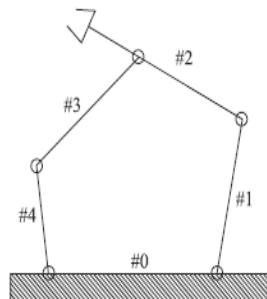


Fig 5

CO 3 PO3 10

CO 2 PO2 10

OR

6 a) A cylindrical manipulator is shown in **Fig. 6**. Perform the following for the same:
 (i) Assign link-frames (ii) Obtain DH-Parameter table (iii) obtain HTMs (i.e., H^0_1 , H^1_2 & H^2_3) and (iv) Final forward transformation matrix. [Use a kinematic diagram and label all frames].

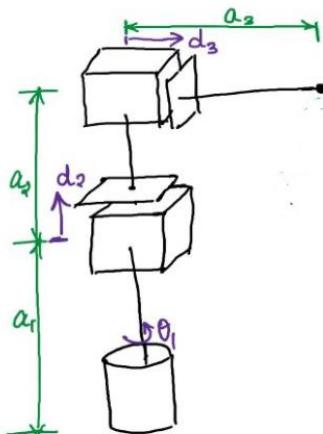


Figure . : Cylindrical (R-P-P) Manipulator

Fig 6

b) Provide the reasoning behind the basis for calculating the DOF for a Robot Architecture using Grubler's Formula? Calculate the DOF for the Manipulators shown in Fig 7 and Fig 8 using Grubler's formula.

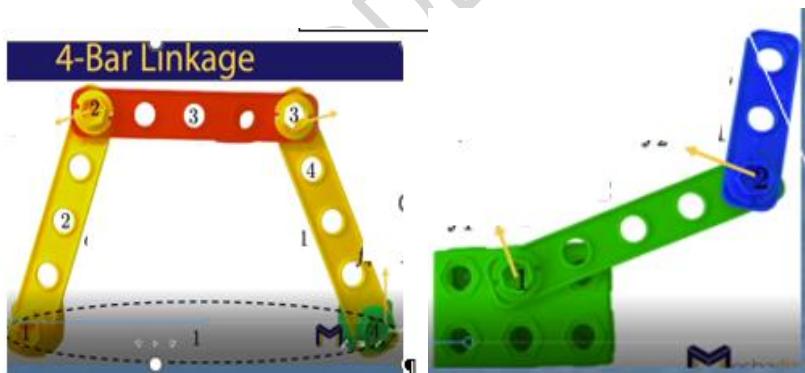


Fig 7

Fig 8

UNIT – IV

7 a) Analyze the Quadcopter Controls for Up/Down, Roll, Pitch and Yaw and flight modes with a neat diagram (Assume a X-configuration)

b) Analyze the Inertial Navigation System in the context of “Sensor dedicated to a Flight Controller”. Use neat diagrams.

OR

	8	a)	Analyze the various types of UAVs under the fixed wing and Rotary Wing UAVs and their suitability for various applications.	<i>CO 2</i>	<i>PO2</i>	10
		b)	Identify and analyze the various launching and recovery systems for an UAV	<i>CO 2</i>	<i>PO2</i>	10
			UNIT – V			
	9	a)	Write short notes on ROS (a) Messages (b) Services (c) Nodes and Nodelets (d) Topics (e) Bags	--	--	10
		b)	Analyze how the URDF (expand it) supports 3D modeling and simulation in ROS.	<i>CO 2</i>	<i>PO2</i>	10
			OR			
	10	a)	Explain briefly the important Debugging Tools available in ROS	--	--	10
		b)	Discuss the ROS Filesystem level with a neat Diagram, analyzing the salient features of the various elements	<i>CO 2</i>	<i>PO2</i>	10
