

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

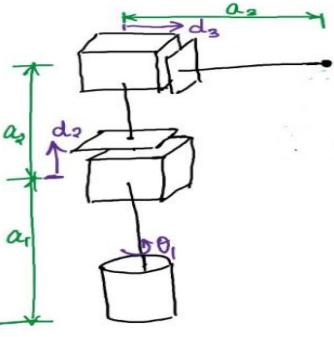
June 2025 Semester End Main Examinations

Programme: B.E.

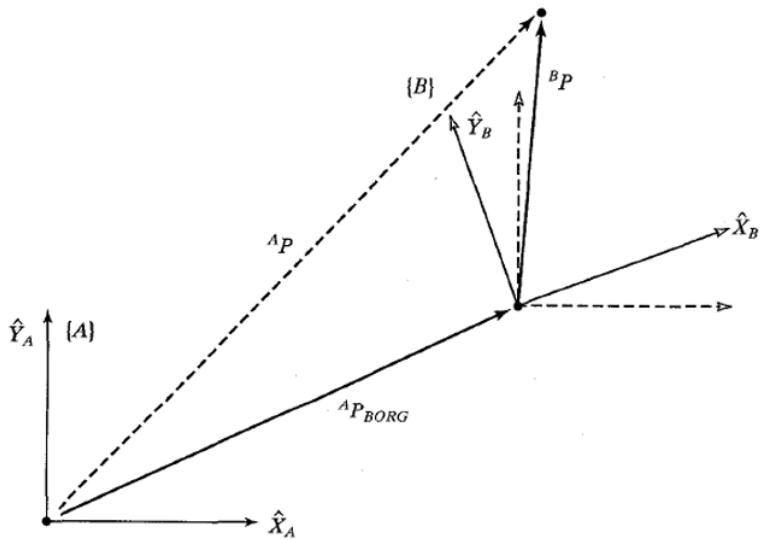
Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.


Course Code: 23EC6OE1IR / 22EC6OE1IR

Max Marks: 100


Course: Introduction to Robotics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	How are the thumb rules applied on the decisions of robot usage? “Hardware implementations of a robotic system involves various subsystems”. Highlight the significance and interactions of the subsystems involved in the same.	1	1	10
		b)	Analyze the various fundamental Robot Arms based on the coordinate system classification.	2	2	10
OR						
	2	a)	Suggest the kind of control method suitable for each application below and describe the control method: (a) Pneumatic actuators for opening/closing motions of jaws in gripper of a robot (b) Spot welding job performed for a car assembly	1	1	10
		b)	Analyze the types of Motion Control for industrial robotic arms. Indicate the use of suitable motion control strategy, taking suitable examples.	2	2	10
			UNIT - II			
	3	a)	Discuss the Robot Vision ecosystem, providing aspects of front-end and backend processing	1	1	10
		b)	The displacement of one of the prismatic joints in a Cartesian Robot used for a precision machining application is to be measured. Analyze the requirement to determine which sensor to use? Briefly describe the mechanism and operation of this sensor. Suggest a suitable variant which supports a rotary movement of +/-40 degree instead of the prismatic joint.	2	2	10
OR						

	4	a)	Discuss the working of a Non-Contact Inductive Proximity sensor with a neat diagram and with its applications	1	1	10
		b)	Analyze the working of a Hall effect sensor and its use in measuring velocity.	2	2	10
		UNIT - III				
5	a)	Discuss Degree of Freedom of a Mechanical System. Represent i) A planar five-bar mechanism ii) A double parallelogram mechanism Determine the Degree of Freedom for the same.		1	1	10
	b)	Analyse the inverse kinematics problem? Illustrate why the Inverse Kinematics is complex.		2	2	10
		OR				
6	a)	A cylindrical manipulator is shown in Fig-1 . Perform the following for the same after analysis: (i) Assign link-frames (ii) Obtain DH-Parameter table (iii) obtain HTMs (i.e., H01, H12 & H23) and (iv) Final forward transformation matrix. [Use a kinematic diagram and label all frames].		2	2	10
		<p>Figure : Cylindrical (R-P-P) Manipulator</p>				
		Fig-1				
	b)	Define a Mechanism. Fig-2 shows a frame $\{B\}$ that is rotated by 30 degrees about the \hat{Z} Axis. \hat{Z} axis is pointing out of the page. If a point is given by $[0 \ 2 \ 2]$ in the frame $\{B\}$, find its coordinates in frame $\{A\}$.		1	1	10
		Fig 2				

Fig-3 shows a frame $\{B\}$ which is rotated relative to frame $\{A\}$, about \hat{Z} by 30 degrees, translated 10 units in \hat{X}_A and translated 5 units in \hat{Y}_A . Find ${}^A P$, where ${}^B P = [3.0 \quad 7.0 \quad 0.0]^T$.

Fig-3

UNIT - IV

7	a)	Analyze the Quadcopter Controls for Roll, Pitch, Yaw, and flight modes with a neat diagram.	2	2	10
	b)	Identify and discuss the various launching and recovery systems for an UAV.	1	1	10

OR

8	a)	Analyze the Inertial Navigation System in the context of “sensor dedicated to a Flight Controller”. Use a neat diagram.	2	2	10
	b)	Briefly Discuss the various types of UAVs under the fixed wing and Rotary Wing UAVs.	1	1	10

UNIT - V

9	a)	Analyze how the URDF supports 3D modeling and simulation in ROS.	2	2	10
	b)	Elaborate the three broad categories of Architecture/Conceptual design of ROS.	1	1	10

OR

10	a)	Analyze the ROS Computation Graph Level and its versatility with a neat diagram.	2	2	10
	b)	Discuss the roles of ROS Master and ROS Parameter Server.	1	1	10
