

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: ES – Cluster Elective

Course Code: 19EC6CE1ML

Course: Machine Learning

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 19.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks									
1	a)	<p>Define Machine Learning. How machine learning is different from rule based programming? Identify the type of machine learning to be applied to the following use cases:</p> <ul style="list-style-type: none"> • Product price prediction • An intelligent agent navigates the vehicle • Prediction on a semiconductor chip faulty or not 	<i>CO 1</i>	<i>PO 1</i>	10									
	b)	Discuss on the utility of ‘Numpy’ and ‘Pandas’ libraries in building ML models.	<i>CO 1</i>	<i>PO 1</i>	6									
	c)	<ul style="list-style-type: none"> • <code>lst = [1,2,[3,4],[5,[6,7,['#NLP ']],8,9],10,11]</code> • <code>d={'k1':[1,2,3,{'voiceassistant':['Siri','Cortana',{'Alexa':[1,2,3,'\$hello']}]}]}</code> <p>Write python expression to extract “NLP” from the list and “Alexa” from the dictionary.</p>	<i>CO 1</i>	<i>PO 1</i>	4									
UNIT - II														
2	a)	Develop the pseudocode for kNN algorithm and discuss it's pros and cons.	<i>CO 3</i>	<i>PO 3</i>	8									
	b)	Discuss on the decision tree splitting criteria gini and entropy.	<i>CO 1</i>	<i>PO 1</i>	6									
	c)	Analyze the utility of cross validation technique and random forest in feature selection.	<i>CO 2</i>	<i>PO 2</i>	6									
OR														
3	a)	Justify the effectiveness of ensembling: Bagging and Boosting in model performance improvement.	<i>CO 2</i>	<i>PO 2</i>	8									
	b)	<p style="text-align: center;">Predicted</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td>1</td><td>0</td></tr> <tr> <td>1</td><td>655</td><td>8</td></tr> <tr> <td>0</td><td>12</td><td>125</td></tr> </table> <p style="text-align: center;">Actual</p> <p>Given the confusion matrix from the result of a classifier, evaluate the model performance based on precision, recall, specificity and F1-score.</p>		1	0	1	655	8	0	12	125	<i>CO 1</i>	<i>PO 1</i>	8
	1	0												
1	655	8												
0	12	125												

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Differentiate between Standard scaler and MinMax scaler.	CO 2	PO 2	4																																	
UNIT - III																																						
4	a)	Mention the mathematical model of Naive Baye's classifier. Given in the data table two features X_1 & X_2 and 'y' as the class variable. If a new data point has $X_1=2.6$ and $X_2= 70$, applying Gaussian Naive Baye's, predict it's class. <table border="1"> <thead> <tr> <th>y</th> <th colspan="5">Class-A</th> <th colspan="5">Class-B</th> </tr> </thead> <tbody> <tr> <td>X1</td> <td>4.1</td> <td>3.4</td> <td>2.9</td> <td>2.8</td> <td>1.6</td> <td>2.5</td> <td>2.0</td> <td>1.7</td> <td>1.4</td> <td>1.2</td> </tr> <tr> <td>X2</td> <td>78</td> <td>70</td> <td>62</td> <td>66</td> <td>58</td> <td>68</td> <td>64</td> <td>62</td> <td>70</td> <td>72</td> </tr> </tbody> </table>	y	Class-A					Class-B					X1	4.1	3.4	2.9	2.8	1.6	2.5	2.0	1.7	1.4	1.2	X2	78	70	62	66	58	68	64	62	70	72	CO 3	PO 3	10
y	Class-A					Class-B																																
X1	4.1	3.4	2.9	2.8	1.6	2.5	2.0	1.7	1.4	1.2																												
X2	78	70	62	66	58	68	64	62	70	72																												
	b)	Identify the pandas functions & sklearn APIs to : create dataframe, split features & target, split train & test set, create Logistic Regression model instance, train the model on trainset.	CO 3	PO 3	10																																	
UNIT - IV																																						
5	a)	Estimate the R2-score of linear regression with the illustration of residue error (MSE). Give justification on the error you get after one iteration of training. Training starts with $\theta_0=1$ and $\theta_1=0.5$. Refer the data table given below. <table border="1"> <thead> <tr> <th>(x_i)</th> <th>(y_i)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>3</td> </tr> <tr> <td>2</td> <td>5</td> </tr> <tr> <td>3</td> <td>7</td> </tr> <tr> <td>4</td> <td>9</td> </tr> </tbody> </table>	(x_i)	(y_i)	1	3	2	5	3	7	4	9	CO 2	PO 2	8																							
(x_i)	(y_i)																																					
1	3																																					
2	5																																					
3	7																																					
4	9																																					
	b)	Write python code to create a numpy array as: $([[0, 1],[2, 3],[4, 5]])$ and generate polynomial features with: i)degree=2 and interaction_only=True ii)degree=2 and interaction_only= False	CO 3	PO 3	6																																	
	c)	Interpret the relationship between IQR, skewness and outliers in a feature distribution.	CO 2	PO 2	6																																	
		OR																																				
6	a)	Develop the algorithm flow of Gradient Descent for simple linear regression with the illustration of cost function.	CO 3	PO 3	10																																	
	b)	Interpret the evaluation metrics used for regression models.	CO 2	PO 2	10																																	
		UNIT - V																																				
7	a)	Define Deep Learning and mention few of it's applications. Illustrate a single layer perceptron model.	CO 1	PO 1	10																																	
	b)	Differentiate between agglomerative and divisive clustering. Given 4 sample data records with 2 features as: A(2,3), B(6,1), C(1,2) and D(3,0) and initialized 2 centroids as: C1(4,2) and C2(2,1). Form clusters with one iteration of training using Euclidean distance metric. Show the clusters in a 6X6 data space.	CO 3	PO 3	10																																	